Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Radioreceptor assay for epidermal growth factor. [/sup 125/I tracer technique, mice]

Journal Article · · Anal. Biochem.; (United States)
An established cell line of human lung fibroblasts with a high number of surface receptors for mouse epidermal growth factor (mEGF) was used to deveop a simple and highly sensitive radioreceptor assay for EGF. /sup 125/I-Labeled mEGF competed mole for mole with unlabeled mEGF for specific receptors. Optimal range for discriminating EGF concentrations in body fluids and tissue extracts by a competitive binding assay was between 5 and 100 ng/ml. Interassay correlation of variation was 8.47% and the recovery of highly purified mEGF added to serum and urine samples was greater than 95%. Human serum and amniotic fluids contained about 24 and 4 ng/ml, respectively, of mEGF equivalents. Concentrations of mEGF in mouse urine and serum were highly variable and were 2- to 10-fold greater than that previously detected by radioimmune assay. Hypophysectomy nearly abolished submaxillary mEGF content in both male and female mice, but testosterone treatment of hypophysectomized animals restored normal concentrations of mEGF to the glands. mEGF added to culture medium disappeared with time as a function of the number of cellular EGF receptors indicating cellular degradation of the growth factor. The radioreceptor assay for EGF is based on the close biologic relationship between the cell receptor site and the native hormone and should prove to be a useful complementary tool to characterize the physiological role of EGF.
Research Organization:
Pennsylvania State Univ., Hershey
OSTI ID:
6180712
Journal Information:
Anal. Biochem.; (United States), Journal Name: Anal. Biochem.; (United States) Vol. 93:2; ISSN ANBCA
Country of Publication:
United States
Language:
English