skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A highly catalytic and selective conversion of carboxylic acids to 1-alkenes of one less carbon atom

Journal Article · · Journal of Organic Chemistry; (United States)
DOI:https://doi.org/10.1021/jo00053a008· OSTI ID:6130661
; ;  [1]
  1. Henkel Research Corp., Santa Rosa, CA (United States)

An equimolar mixture of a carboxylic acid and acetic anhydride produces a reagent combination that undergoes a highly efficient decarbonylation/dehydration at 250[degrees]C using either Pd- or Rh-based catalyst systems, affording excellent yields of the corresponding 1-alkenes and one less carbon atom. The stoichiometric and catalytic decarbonylation of aliphatic aldehydes and acid chlorides to alkanes and alkenes, respectively, by transition-metal complexes are well-known and synthetically useful transformations. Relatively little, however, has been reported concerning the analogous decarbonylation/dehydration of aliphatic carboxylic acids to olefins, with generally poor results achieved in terms of catalyst efficiency and selectivity toward terminal olefin formation in the product. For example, the decarbonylation/dehydration of stearic acid to heptadecane using a Rh-based catalyst was reported to proceed with a maximum catalyst turnover number (TON; moles of olefin product formed per mole of catalyst used) of ca. 250, with selectivities toward 1-heptadecene formation typically below 50%. Interestingly, results were presented in this work which suggested that the decarbonylation of stearic acid proceeded via intermediate formation of stearic anhydride. Use of a preformed, symmetrical anhydride is not desirable from an economic or synthetic viewpoint, particularly since its decarbonylation should result in the formation of equal amounts of olefin and carboxylic acid coproducts. The authors now report here that the use of a carboxylic acid substrate as an equimolar mixture with acetic anhydride (Ac[sub 2]O) produces a mixed anhydride system which undergoes an extremely facile decarbonylation reaction to provide a general and highly selective route to the corresponding 1-alkenes of one less carbon atom. 19 refs., 1 tab.

OSTI ID:
6130661
Journal Information:
Journal of Organic Chemistry; (United States), Vol. 58:1; ISSN 0022-3263
Country of Publication:
United States
Language:
English