Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Stimulation by ATP of proinsulin to insulin conversion in isolated rat pancreatic islet secretory granules. Association with the ATP-dependent proton pump

Journal Article · · J. Biol. Chem.; (United States)
OSTI ID:6127750
Isolated rat pancreatic islets were pulse-labeled for 5 min with (/sup 3/H)leucine then chased for 25 min, during which time endogenously labeled (/sup 3/H)proinsulin becomes predominantly compartmented in immature secretory granules. The islets were then homogenized in isotonic sucrose (pH 7.4) and a beta-granule preparation obtained by differential centrifugation and discontinuous sucrose gradient ultracentrifugation. This preparation was enriched 8-fold in beta-granules. Aside from contamination with mitochondria and a limited number of lysosomes, the beta-granule preparation was essentially free of any other organelles involved in proinsulin synthesis and packaging (i.e. microsomal elements and, more particularly, Golgi complex). Conversion of endogenously labeled (/sup 3/H)proinsulin was followed in this beta-granule fraction for up to 2 h at 37 degrees C in a buffer (pH 7.3) that mimicked the cationic constituents of B-cell cytosol, during which time 92% of the beta-granules remained intact. Proinsulin conversion was analyzed by high performance liquid chromatography. The rate of proinsulin conversion to insulin was stimulated by 2.2 +/- 0.1-fold (n = 6) (at a 60-min incubation) in the presence of ATP (2 mM) and an ATP regenerating system compared to beta-granule preparations incubated without ATP. This ATP stimulation was abolished in the presence of beta-granule proton pump ATPase inhibitors (tributyltin, 2.5 microM, or 1,3-dicyclohexylcarbodiimide, 50 microM). Inhibitors of mitochondrial proton pump ATPases had no effect on the ATP stimulation of proinsulin conversion. When granules were incubated in a more acidic buffer, proinsulin conversion was increased relative to that at pH 7.3. At pH 5.5, ATP no longer stimulated conversion, and tributyltin and 1,3-dicyclohexylcarbodiimide had no effect.
Research Organization:
Brigham and Women's Hospital, Boston, MA
OSTI ID:
6127750
Journal Information:
J. Biol. Chem.; (United States), Journal Name: J. Biol. Chem.; (United States) Vol. 262:22; ISSN JBCHA
Country of Publication:
United States
Language:
English