skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Use of iodine surface geochemical surveys in the Lodgepole and Minnelusa plays, U.S. northern Rockies

Journal Article · · Oil and Gas Journal
OSTI ID:61272
;  [1]
  1. Atoka Geochemical Services Corp., Englewood, CO (United States)

The use of surface geochemistry is becoming more prevalent in oil exploration, especially for focusing specific target areas for 2D and 3D seismic surveys. Presented here are two surface geochemical surveys utilizing the iodine method in delineating Upper Minnelusa sands of Permian age in the Powder River basin and Lodgepole Waulsortian-like mounds of Mississippian age in the Williston basin. Iodine is an indirect indicator of a petroleum accumulation at depth. Increases in iodine anomalies are caused by the presence of petroleum seepage in the upper part of the soil section. In the very shallow surface, less than 10 ft, a reaction occurs between hydrocarbons and iodine under sunlight forming inorganic compounds. The source of the iodine is either from minerals in the soil and/or from the atmosphere with ultraviolet light as the initiator of the reaction. Any iodine in the subsurface could not migrate far in the presence of hydrocarbons and due to its large molecular size. The compounds that form in the soil remain solid and are relatively difficult to remove. Any surface geochemical anomaly needs to be followed by seismic in order to provide a specific drilling target. If a surface geochemical survey is properly designed and implemented, when no anomaly is present, then to date regardless of the type of method used the results have been dry holes. If a surface geochemical anomaly is present, the intensity, areal extent, and quality of the anomaly cannot determine the economic viability of the accumulation of depth, but there is a significant increase in the success rate. The best utilization of these methods is to determine areas where there is no possibility of finding petroleum and focusing on areas that do. In the case of the Lodgepole and Minnelusa plays, surface geochemistry allows a low cost approach and helps focus and minimize 2D and 3D survey costs.

OSTI ID:
61272
Journal Information:
Oil and Gas Journal, Vol. 93, Issue 23; Other Information: PBD: 5 Jun 1995
Country of Publication:
United States
Language:
English