skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microprocessor tester for the treat upgrade reactor trip system

Abstract

The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations.

Authors:
;
Publication Date:
Research Org.:
Argonne National Lab., IL (USA)
OSTI Identifier:
6120836
Report Number(s):
CONF-841007-39
ON: DE85004082
DOE Contract Number:
W-31-109-ENG-38
Resource Type:
Conference
Resource Relation:
Conference: Nuclear science symposium, Orlando, FL, USA, 31 Oct 1984; Other Information: Portions are illegible in microfiche products
Country of Publication:
United States
Language:
English
Subject:
22 GENERAL STUDIES OF NUCLEAR REACTORS; 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; TREAT REACTOR; REACTOR PROTECTION SYSTEMS; MICROPROCESSORS; SCRAM; AIR COOLED REACTORS; COMPUTERS; ELECTRONIC CIRCUITS; ENRICHED URANIUM REACTORS; EXPERIMENTAL REACTORS; GAS COOLED REACTORS; GRAPHITE MODERATED REACTORS; HOMOGENEOUS REACTORS; MICROELECTRONIC CIRCUITS; REACTOR SHUTDOWN; REACTORS; RESEARCH AND TEST REACTORS; SHUTDOWNS; SOLID HOMOGENEOUS REACTORS; TEST REACTORS; THERMAL REACTORS; 220400* - Nuclear Reactor Technology- Control Systems; 220600 - Nuclear Reactor Technology- Research, Test & Experimental Reactors

Citation Formats

Lenkszus, F.R., and Bucher, R.G. Microprocessor tester for the treat upgrade reactor trip system. United States: N. p., 1984. Web.
Lenkszus, F.R., & Bucher, R.G. Microprocessor tester for the treat upgrade reactor trip system. United States.
Lenkszus, F.R., and Bucher, R.G. 1984. "Microprocessor tester for the treat upgrade reactor trip system". United States. doi:. https://www.osti.gov/servlets/purl/6120836.
@article{osti_6120836,
title = {Microprocessor tester for the treat upgrade reactor trip system},
author = {Lenkszus, F.R. and Bucher, R.G.},
abstractNote = {The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 1984,
month = 1
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. To improve the analytical extrapolation of test results to full-size assembly bundles, the facility upgrade will increase the maximum size of the test bundle from 7 to 37 fuel pins. By creating a core convertor zone around the test location, the neutron spectrum incident on the test assembly will be hardened and the maximum energy deposited in the sample will be increased. In addition, a programmable Automated Reactor Control System (ARCS) willmore » permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations. A quantitative reliability analysis of the RTS shows that the unreliability, that is, the probability of failure, is acceptable for a 10 hour mission time or risk interval.« less
  • The Transient Reactor Test Facility (TREAT) at Argonne National Laboratory is being upgraded to simulate extreme conditions in a reactor. This facility will be used to subject test assemblies of fuel bundles to very rapid and intense power transients. This paper describes in detail the manual reactor control system and its interfaces with the plant protection system the automatic reactor control system.
  • The Transient Reactor Test Facility (TREAT) at Argonne National Laboratory is being upgraded to simulate extreme conditions in a reactor. This facility will be used to subject test assemblies of fuel bundles to very rapid and intense power transients. This paper will describe in detail the manual reactor control system and its interfaces with the plant protection system the automatic reactor control system.
  • This paper describes the design of the Automatic Reactor Control System (ARCS) for the Transient Reactor Test Facility (TREAT) Upgrade. A simulation was used to facilitate the ARCS design, and to completely test and verify its operation before installation at the TREAT facility. The ARCS is a microprocessor network based closed loop control system that provides a position demand control signal to the transient rod hydraulic drive system. There are four identical servo-hydraulic rod drives and each operates as a position control system. The ARCS updates its position demand control signal every 1 msec and its function is to controlmore » the transient rods so that the reactor follows a prescribed power-time profile (planned transient). The Main Control Algorithm (MCA) for the ARCS is an optimal reactivity demand algorithm. At each time step, the MCA generates a set of reference reactor functions, e.g., power, period, energy, and delayed neutron power. These functions are compared to plant measurements and estimated values at each time step and are operated on by appropriate algorithms to generate the reactivity demand function. The data necessary to calculate the reference functions is supplied from a Transient Prescription Control Data Set (TPCDS). The TPCDS specifies the planned transient as a fixed number of simply connected independent power profile segments. The developed simulation code models the TREAT reactor kinetics, the hydraulic rod drive system, the plant measurement system, and the ARCS control processor MCA. All of the models operate as continuous systems with the exception of the MCA which operates as a discrete time system at fixed multiples of 1 msec. The study indicates that the ARCS will meet or exceed all of its design specifications.« less
  • A triply redundant reactor scram system (RSS) has been designed for the upgraded TREAT facility. The independent failures reliability goal for the RSS is <10/sup -9/ failures per demand. An independent failures analysis indicated that this goal would be met. In addition, however, recognizing that in heavily redundant systems common-cause failures dominate, a common cause analysis of the TREAT upgrade RSS was done. The objective was to identify those common-cause initiators which could affect the functioning of the RSS, and to subsequently modify the design of the RSS so that the effect was minimized. A number of common-cause initiators weremore » identified which were capable of defeating the triple redundancy feature of the reactor scram system. By means of a systematic analysis of the effect these initiators could have on the system, it was possible to identify seven necessary design and procedural modifications that would greatly reduce the probability of the reactor being run while the RSS was in a faulted condition.« less