Metabolic heterogeneity in human calf muscle during maximal exercise
- Univ. of Pennsylvania, Philadelphia (United States) Free Univ. of Brussels (Belgium)
- Univ. of Pennsylvania, Philadelphia (United States)
- Free Univ. of Brussels (Belgium)
Human skeletal muscle is composed of various muscle fiber types. The authors hypothesized that differences in metabolism between fiber types could be detected noninvasively with {sup 31}P nuclear magnetic resonance spectroscopy during maximal exercise. This assumes that during maximal exercise all fiber types are recruited and all vary in the amount of acidosis. The calf muscles of seven subjects were studied. Two different coils were applied: an 11-cm-diameter surface coil and a five-segment meander coil. The meander coil was used to localize the {sup 31}P signal to either the medial or the lateral gastrocnemius. Maximal exercise, consisting of rapid plantar flexions, resulted in an 83.7% {plus minus} 7.8% decrease of the phosphocreatine pool and an 8-fold increase of the inorganic phosphate (P{sub i}) pool. At rest the P{sub i} pool was observed as a single resonance (pH 7.0). Toward the end of the first minute of exercise, three subjects showed three distinct P{sub i} peaks. During the second minute of exercise the pH values stabilized. The same pattern was seen when the signal was collected from the medial or lateral gastrocnemius. In four subjects only two distinct P{sub i} peaks were observed. The P{sub i} peaks had differing relative areas in different subjects, but they were reproducible in each individual. This method allowed is to study the appearance and disappearance of the different P{sub i} peaks, together with the changes in pH. Because multiple P{sub i} peaks were seen in single muscles they most likely identify different muscle fiber types.
- OSTI ID:
- 6096810
- Journal Information:
- Proceedings of the National Academy of Sciences of the United States of America; (United States), Journal Name: Proceedings of the National Academy of Sciences of the United States of America; (United States) Vol. 88:13; ISSN 0027-8424; ISSN PNASA
- Country of Publication:
- United States
- Language:
- English
Similar Records
Effect of systemic pH on pH sub i and lactic acid generation in exhaustive forearm exercise
Functional pools of fast and slow twitch fibers observed by /sup 31/P-NMR during exercise of flexor wrist muscles in man