Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Relative contributions of bacteria and fungi to rates of degradation of lignocellulosic detritus in salt-marsh sediments. [Spartina alterniflora; Buergenerula spartinae; Phaeosphaeria typharum; Leptosphaeria obiones]

Journal Article · · Appl. Environ. Microbiol.; (United States)
OSTI ID:6095972

Specifically radiolabeled (/sup 14/C-lignin)lignocellulose and (/sup 14/C-polysaccharide)lignocellulose from the salt-marsh cordgrass Spartina alterniflora were incubated with an intact salt-marsh sediment microbial assemblage, with a mixed (size-fractionated) bacterial assemblage, and with each of three marine fungi, Buergenerula spartinae, Phaeosphaeria typharum, and Leptosphaeria obiones, isolated from decaying S. alterniflora. The bacterial assemblage alone mineralized the lignin and polysaccharide components of S. alterniflora lignocellulose at approximately the same rate as did intact salt-marsh sediment inocula. The polysaccharide component was mineralized twice as fast as the lignin component; after 23 days of incubation, ca. 10% of the lignin component and 20% of the polysaccharide component of S. alterniflora lignocellulose were mineralized. Relative to the total sediment and bacterial inocula, the three species of fungi mediated only very slow mineralization of the lignin and polysaccharide components of S. alterniflora lignocellulose. Experiments with uniformly /sup 14/C-labeled S. alterniflora material indicated that the three fungi and the bacterial assemblage were capable of degrading the non-lignocellulosic fraction of S. alterniflora material, but only the bacterial assemblage significantly degraded the lignocellulosic fraction. Our results suggest that bacteria are the predominant degraders of lignocellulosic detritus in salt-march sediments.

Research Organization:
Univ. of Georgia, Athens
OSTI ID:
6095972
Journal Information:
Appl. Environ. Microbiol.; (United States), Journal Name: Appl. Environ. Microbiol.; (United States) Vol. 48:1; ISSN AEMID
Country of Publication:
United States
Language:
English