Covariant canonical formalism for gravity
Journal Article
·
· Ann. Phys. (N.Y.); (United States)
We continue the previous discussion (A. D'Adda, J. E. Nelson, and T. Regge, Ann. Phys. (N.Y.) 165) of the covariant canonical formalism for the group manifold and relate it to the standard canonical vierbein formalism as pioneered by Dirac. The form bracket is related to the Poisson bracket of classical mechanics. We utilise systematically the calculus of differential forms and a compound notation which labels Poincare multiplets. In this way we obtain a particularly clear and compact expression for the Hamiltonian and the constraints algebra of the vierbein formalism.
- Research Organization:
- Istituto di Fisica Teorica dell'Universita di Torino, Isituto Nazionale di Fisica Nucleare, Sezione di Torino, 10125 Torino, Italy
- OSTI ID:
- 6093566
- Journal Information:
- Ann. Phys. (N.Y.); (United States), Journal Name: Ann. Phys. (N.Y.); (United States) Vol. 166:1; ISSN APNYA
- Country of Publication:
- United States
- Language:
- English
Similar Records
Covariant canonical formalism for the group manifold
Discrete Quantum Gravity in the Regge Calculus Formalism
Covariant operator formalism of two-dimensional topological gravity II
Journal Article
·
Sat Nov 30 23:00:00 EST 1985
· Ann. Phys. (N.Y.); (United States)
·
OSTI ID:6276552
Discrete Quantum Gravity in the Regge Calculus Formalism
Journal Article
·
Thu Sep 01 00:00:00 EDT 2005
· Journal of Experimental and Theoretical Physics
·
OSTI ID:20702632
Covariant operator formalism of two-dimensional topological gravity II
Journal Article
·
Sun Jan 19 23:00:00 EST 1992
· Modern Physics Letters A; (United States)
·
OSTI ID:5549196