skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Planetary Circulations: 2. The Jovian Quasi-Geostrophic Regime

Journal Article · · J. Atmos. Sci.; (United States)

The characteristics of the two-level quasi-geostrophic model are evaluated for a wide range of parameter values in the Jovian domain. The results support the hypothesis that baroclinic instability energizes the circulation of Jupiter and Saturn and that the blocking effect of planetary wave propagation on quasi-geostrophic turbulent cascades determines the width and zonality of the bands: the degree of zonality being higher in the absence of surface drag.The model circulations consist of multiple westerly jets, separated by strong easterly flows: the result of momentum partitioning by the Kuo vortex separation process. There are no large-scale vertical motions. A cyclic variation occurs (with a time scale of several years) during which phases with intense, large-scale baroclinic activity alternate with longer, more quiescent phases involving weak, small-scale baroclinic instability and neutral baroclinic waves. These neutral waves, generated by quasi-two-dimensional cascades and propagating at speeds of O (1 m s/sup -1/), provide the major mode of adjustment in the quasi-steady phase and form the gyres endemic to multiple jet circulations.Similar large-scale motions occur for all the parameter values considered: for weak and strong staticstabilities, for eddy sizes ranging from 2000--9500 km and for pole-to-equator temperature differences varying from 5--90 K. The weak thermal gradients maintain strong dynamical activity by their association, in geostrophic motion, with the large value of the specific-heat constant for hydrogen.For Jupiter, a correspondence between the theoretical perturbation pressure and the observed planetary-scale features suggests that condensation processes related to the geostrophically balanced pressure variations produce the main cloud bands and Great Red Spot, while local temperature changes due to baroclinic instability and frontogenesis create the eddy cloud systems embedded within the main bands.

Research Organization:
Geophysical Fluid Dynamics Laboratory/NOAA, Princeton University, Princeton, NJ 08540
OSTI ID:
6093297
Journal Information:
J. Atmos. Sci.; (United States), Vol. 36:5
Country of Publication:
United States
Language:
English

Similar Records

Planetary circulations: 1. Barotropic representation of Jovian and terrestrial turbulence
Journal Article · Tue Aug 01 00:00:00 EDT 1978 · J. Atmos. Sci.; (United States) · OSTI ID:6093297

Linear properties of eddies in a jovian troposphere forced by deep jets
Journal Article · Wed Nov 01 00:00:00 EST 1989 · Geophysical Research Letters (American Geophysical Union); (USA) · OSTI ID:6093297

Thermal shallow water models of geostrophic turbulence in Jovian atmospheres
Journal Article · Wed Jan 15 00:00:00 EST 2014 · Physics of Fluids (1994) · OSTI ID:6093297