skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Formulation and physicochemical properties of macro- and microemulsions prepared by interfacial ion-pair formation between amino acids and fatty acids

Thesis/Dissertation ·
OSTI ID:6093289

Emulsions were prepared by dissolving an amino acid in the aqueous phase and a fatty acid in the oil phase of the emulsions. When the two phases were mixed, the amino acid and fatty acid formed an ion pair at the oil-water interface which stabilized one phase as small droplets within the other to give a stable emulsion. NMR spectra indicated protonation on the amino groups when a carboxylic acid was added to an aqueous solution of an amino acid. Various hydrocarbons and mineral oil could be emulsified into oil-in-water emulsions with a high volume ratio containing up to 75% internal oil phase. Vegetable oils such as soybean oil, safflower seed oil and cottonseed oil were emulsified to a lesser extent. Both oil-in-water and water-in-oil emulsions could be formed with the same emulsifying agents depending on the phase volume ratio and the order of addition of oil phase to water phase or the reverse. Particle size measurements using laser light-scattering techniques indicated an oil-in-water emulsion mixed by a magnetic stirring bar had an internal droplet size in the range of 0.1 to 0.3 micron. Such emulsions were stable at 50/degrees/ and 60/degrees/C for three to six months. In addition to the macroemulsions described above, completely clear water-in-oil microemulsions can be prepared from the above systems by the addition of long-chain fatty alcohols such as oleyl alcohol. Clear regions of such clear microemulsions were characterized. Microemulsion systems suitable for tertiary oil recovery were also studied. Clear microemulsions prepared by ion-pairing between ammonia and hexanoic acid could contain octane or tetradecane in the form of oil-in-water or water-in-oil microemulsions at a wide range of oil to aqueous ratio.

Research Organization:
Texas Univ., Austin (USA)
OSTI ID:
6093289
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English