skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Endogenous xanthine oxidase-derived O sub 2 metabolites inhibit surfactant metabolism

Journal Article · · American Journal of Physiology; (USA)
OSTI ID:6071940

The ability of xanthine oxidase (XO)-derived, partially reduced O2 species (PROS) to inhibit surfactant production was examined in freshly isolated alveolar type II (ATII) pneumocytes from New Zealand White rabbits. (Methyl-3H)choline chloride and (1-14C)palmitate incorporation into phosphatidylcholine (PC) decreased in a dose-dependent manner, whereas peak media hydrogen peroxide (H2O2) concentration increased, when 1, 5, or 10 mU/ml XO were added to cell suspensions containing 500 microM xanthine. Addition of 100 microM allopurinol inhibited H2O2 production and abolished the decrease in choline and palmitate incorporation into PC. ATII cells incubated with 500 microM xanthine alone incorporated choline and palmitate at 90 and 80% of control levels, respectively. However, 100 microM allopurinol restored precursor incorporation to control values. To identify a possible intracellular source of PROS, ATII cell xanthine dehydrogenase (XDH) and XO activities were measured. Both total activity (XDH + XO; 45 +/- 7 microU/mg protein) and the percentage activity in the oxidase form (%XO; 30 +/- 4%) remained unchanged in ATII cells incubated in media only (control) for 2 h. In contrast, incubation of ATII cells with 500 microM xanthine resulted in a 50% loss of XDH + XO activity and a 21% increase in %XO within 10 min. After 2 h there was no measurable XDH + XO activity in xanthine-treated cells. Total XDH + XO activity in cells incubated with 500 microM xanthine and 100 microM allopurinol was less than 6% of control values throughout the incubation.

OSTI ID:
6071940
Journal Information:
American Journal of Physiology; (USA), Vol. 259:4 Pt 1; ISSN 0002-9513
Country of Publication:
United States
Language:
English