Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Surface exchange model of radiative heat transfer from anisotropic scattering layers

Journal Article · · Journal of Heat Transfer (Transactions of the ASME (American Society of Mechanical Engineers), Series C); (United States)
DOI:https://doi.org/10.1115/1.3250762· OSTI ID:6064188
;  [1]
  1. Univ. of Minnesota, Minneapolis (United States)

Scaling laws are developed that reduce the radiative heat transfer problem in an isothermal, absorbing-emitting, planar layer to a radiative exchange problem between gray surfaces through a nonparticipating medium. The wall reflectivity and the surface temperatures become the parameters to be scaled. The scaled parameters are obtained by matching the heat fluxes leaving the original layer. The resulting scaled nonparticipating reflectivity is found to be a function of the original medium reflectivity and the optical depth. The scaled nonparticipating surface temperatures include the influence of the medium temperature and the boundary source. Excellent agreement is shown for the layer reflectance, transmittance, and emittance of some anisotropic scattering media, which are scaled to a nonparticipating layer using this and the previously developed scaling laws.

OSTI ID:
6064188
Journal Information:
Journal of Heat Transfer (Transactions of the ASME (American Society of Mechanical Engineers), Series C); (United States), Journal Name: Journal of Heat Transfer (Transactions of the ASME (American Society of Mechanical Engineers), Series C); (United States) Vol. 111:4; ISSN 0022-1481; ISSN JHTRA
Country of Publication:
United States
Language:
English