Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Model of the radiative properties of the El Chichon stratospheric aerosol layer

Journal Article · · J. Clim. Appl. Meteorol.; (United States)
An accurate multiple-scattering model has been employed to examine the effect of an aerosol layer at 25 mb, corresponding to the El Chichon observations, on the reflection, transmission and absorption of radiation by the stratosphere as a function of latitude, optical thickness and aerosol size distribution. Results are presented and parameterized for each of two wavelength intervals in the shortwave region and 17 wavelength intervals in the longwave region for three models of the aerosol size distribution. They include one model representing the unperturbed stratospheric aerosol plus two models based on measurements of the El Chichon aerosol size distribution. In addition to models of the radiative properties of the aerosol layer, a simple model of the latitudinal distribution of aerosol optical thickness as a function of time is developed, based on diffusive transport in latitude and exponential decay in time. These parameterizations for solar and infrared radiation, together with the dispersion model, permit climate models to account for the evolution of an aerosol size distribution from post-volcanic conditions to background conditions.
Research Organization:
Goddard Space Flight Center, Greenbelt, MD
OSTI ID:
6061093
Journal Information:
J. Clim. Appl. Meteorol.; (United States), Journal Name: J. Clim. Appl. Meteorol.; (United States) Vol. 23; ISSN JCAME
Country of Publication:
United States
Language:
English