Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Lie algebras for systems with mixed spectra. I. The scattering Poeschl--Teller potential

Journal Article · · J. Math. Phys. (N.Y.); (United States)
DOI:https://doi.org/10.1063/1.526559· OSTI ID:6054836
Starting from an N-body quantum space, we consider the Lie-algebraic framework where the Poeschl--Teller Hamiltonian, - 1/2 partial/sup 2//sub chi/ +c sech/sup 2/ chi+s csch/sup 2/ chi, is the single sp(2,R) Casimir operator. The spectrum of this system is mixed: it contains a finite number of negative-energy bound states and a positive-energy continuum of free states; it is identified with the Clebsch--Gordan series of the D/sup +/ x D/sup -/ representation coupling. The wave functions are the sp(2,R) Clebsch--Gordan coefficients of that coupling in the parabolic basis. Using only Lie-algebraic techniques, we find the asymptotic behavior of these wave functions; for the special pure-trough potential (s = 0) we derive thus the transmission and reflection amplitudes of the scattering matrix.
Research Organization:
Centro de Estudios Nucleares, Universidad Nacional Autonoma de Mexico, 04510 Mexico, D. F. Mexico
OSTI ID:
6054836
Journal Information:
J. Math. Phys. (N.Y.); (United States), Journal Name: J. Math. Phys. (N.Y.); (United States) Vol. 26:5; ISSN JMAPA
Country of Publication:
United States
Language:
English