Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Enhancing the brightness of high current electron guns

Technical Report ·
DOI:https://doi.org/10.2172/6049892· OSTI ID:6049892

Concepts such as the two-beam accelerator offer the possibility of translating pulsed power technology into a form useful to the design of high luminosity accelerators for high-energy physics applications. Realization of the promise of these concepts will require the design of electron guns which are optimized with respect to beam brightness at current levels of approximately 1 kA. Because high luminosity implies accelerator operation at high repetition rates, the high-current beam source must be designed so that the beam does not intercept the electrodes. In our investigations of electron gun configurations, we have found that the brightness of a given source is set by practical design choices such as peak voltage, cathode type, gun electrode geometry, and focusing field topology. To investigate the sensitivity of beam brightness to these factors in a manner suitable for modelling transient phenomena at the beam head, we have developed a Darwin approximation particle code, DPC. The main component in our experimental program is a readily modified electron gun that allows us to test many candidate cathode materials, types, and electrode geometries at field stresses up to 1 MW/cm. We have also developed several diagnostics suitable for measuring the brightness of intense, low-emittance beams.

Research Organization:
Lawrence Livermore National Lab., CA (USA)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
6049892
Report Number(s):
UCRL-92669; CONF-850956-19; ON: DE86004482
Country of Publication:
United States
Language:
English