Fermat's principle and nonlinear traveltime tomography
Journal Article
·
· Phys. Rev. Lett.; (United States)
Fermat's principle shows that a definite convex set of feasible slownessmodels, depending only on the traveltime data, exists for the fully nonlineartraveltime inversion problem. In a new iterative reconstruction algorithm, theminimum number of nonfeasible ray paths is used as a figure of merit todetermine the optimum size of the model correction at each step. The numericalresults show that the new algorithm is robust, stable, and produces very goodreconstructions even for high contrast materials where standard methods tend todiverge.
- Research Organization:
- Lawrence Livermore National Laboratory, P.O. Box 808 L-156, Livermore, California 94550(US); Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012
- DOE Contract Number:
- W-7405-ENG-48
- OSTI ID:
- 6035332
- Journal Information:
- Phys. Rev. Lett.; (United States), Journal Name: Phys. Rev. Lett.; (United States) Vol. 62:25; ISSN PRLTA
- Country of Publication:
- United States
- Language:
- English
Similar Records
Traveltime tomography and nonlinear constrained optimization
Global Extrema in Traveltime Tomography
Constraints on minimum velocity variance for seismic-traveltime tomography
Conference
·
Sat Oct 01 00:00:00 EDT 1988
·
OSTI ID:6931896
Global Extrema in Traveltime Tomography
Conference
·
Wed Jun 26 00:00:00 EDT 1991
·
OSTI ID:5459719
Constraints on minimum velocity variance for seismic-traveltime tomography
Journal Article
·
Thu Mar 31 23:00:00 EST 1994
· Geophysical Journal
·
OSTI ID:147904
Related Subjects
657002* -- Theoretical & Mathematical Physics-- Classical & Quantum Mechanics
71 CLASSICAL AND QUANTUM MECHANICS
GENERAL PHYSICS
ALGORITHMS
DIAGNOSTIC TECHNIQUES
FERMAT PRINCIPLE
LEAST SQUARE FIT
MATHEMATICAL LOGIC
MATRICES
MAXIMUM-LIKELIHOOD FIT
NONLINEAR PROBLEMS
NUMERICAL SOLUTION
TOMOGRAPHY
WAVE PROPAGATION
71 CLASSICAL AND QUANTUM MECHANICS
GENERAL PHYSICS
ALGORITHMS
DIAGNOSTIC TECHNIQUES
FERMAT PRINCIPLE
LEAST SQUARE FIT
MATHEMATICAL LOGIC
MATRICES
MAXIMUM-LIKELIHOOD FIT
NONLINEAR PROBLEMS
NUMERICAL SOLUTION
TOMOGRAPHY
WAVE PROPAGATION