skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Amorphous phase separation in crystallizable polymer blends based on poly (aryl ether ketones) and poly (ether imide)

Abstract

The morphology of a series of miscible crystallizable blends based on poly (aryl ether ketones) [PAEK] and poly (ether imide) [PEI] has been investigated as a function of blend composition and crystallization condition by dielectric relaxation spectroscopy. For blends of poly (ether ether ketone) [PEEK] and PEI, dielectric scans of the crystallized samples reveal two glass-rubber relaxations corresponding to the coexistence of a mixed interlamellar amorphous phase, and a pure PEI phase located in interfibrillar/interspherulitic regions. The exclusion of a significant fraction of PEI outside of the crystal lamellae reflects a fundamental change in the nature of interaction between the interlamellar PEEK segments and the PEI chains owing to the constraints imposed on the PEEK segments by the crystal surfaces. The degree of PEI exclusion is dependent upon kinetic factors, i.e. the rate of PEEK crystallization relative to the rate of PEI diffusion away from the advancing crystal front. As a result, lower crystallization temperatures lead to an increase in the amount of PEI trapped in the interlamellar regions. In this work, the morphological characteristics of the PEEK/PEI blends are compared with those of blends comprised of poly (ether ketone ketone) [PEKK] and PEI. The introduction of the {open_quotes}kinked{close_quote} isophthalatemore » moiety in the PEKK backbone has been shown to disrupt the persistence of order at the crystal-amorphous interface, and thereby leads to a reduction in the degree of constraint imposed by the crystal lamellae on the amorphous (interlamellar) PEKK segments. The impact of this reduction in crystalline constraint on the nature of the PEKK/PEI intersegmental interactions and the corresponding PEI segregation is discussed.« less

Authors:
;  [1]
  1. Univ. of Kentucky, Lexington, KY (United States)
Publication Date:
OSTI Identifier:
602998
Report Number(s):
CONF-961108-
TRN: 98:001968-0097
Resource Type:
Conference
Resource Relation:
Conference: Annual meeting of the American Institute of Chemical Engineers (AIChE), Chicago, IL (United States), 10-15 Nov 1996; Other Information: PBD: 1996; Related Information: Is Part Of 1996 First joint topical conference on processing, structure and properties of polymeric materials; PB: 594 p.
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; CRYSTALLIZATION; DIFFUSION; GLASS; KETONES; LAMELLAE; MORPHOLOGY; RELAXATION; SPECTROSCOPY; PHASE STUDIES; POLYETHYLENE GLYCOLS

Citation Formats

Kalika, D.S., and Bristow, J.F. Amorphous phase separation in crystallizable polymer blends based on poly (aryl ether ketones) and poly (ether imide). United States: N. p., 1996. Web.
Kalika, D.S., & Bristow, J.F. Amorphous phase separation in crystallizable polymer blends based on poly (aryl ether ketones) and poly (ether imide). United States.
Kalika, D.S., and Bristow, J.F. Tue . "Amorphous phase separation in crystallizable polymer blends based on poly (aryl ether ketones) and poly (ether imide)". United States. doi:.
@article{osti_602998,
title = {Amorphous phase separation in crystallizable polymer blends based on poly (aryl ether ketones) and poly (ether imide)},
author = {Kalika, D.S. and Bristow, J.F.},
abstractNote = {The morphology of a series of miscible crystallizable blends based on poly (aryl ether ketones) [PAEK] and poly (ether imide) [PEI] has been investigated as a function of blend composition and crystallization condition by dielectric relaxation spectroscopy. For blends of poly (ether ether ketone) [PEEK] and PEI, dielectric scans of the crystallized samples reveal two glass-rubber relaxations corresponding to the coexistence of a mixed interlamellar amorphous phase, and a pure PEI phase located in interfibrillar/interspherulitic regions. The exclusion of a significant fraction of PEI outside of the crystal lamellae reflects a fundamental change in the nature of interaction between the interlamellar PEEK segments and the PEI chains owing to the constraints imposed on the PEEK segments by the crystal surfaces. The degree of PEI exclusion is dependent upon kinetic factors, i.e. the rate of PEEK crystallization relative to the rate of PEI diffusion away from the advancing crystal front. As a result, lower crystallization temperatures lead to an increase in the amount of PEI trapped in the interlamellar regions. In this work, the morphological characteristics of the PEEK/PEI blends are compared with those of blends comprised of poly (ether ketone ketone) [PEKK] and PEI. The introduction of the {open_quotes}kinked{close_quote} isophthalate moiety in the PEKK backbone has been shown to disrupt the persistence of order at the crystal-amorphous interface, and thereby leads to a reduction in the degree of constraint imposed by the crystal lamellae on the amorphous (interlamellar) PEKK segments. The impact of this reduction in crystalline constraint on the nature of the PEKK/PEI intersegmental interactions and the corresponding PEI segregation is discussed.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Dec 31 00:00:00 EST 1996},
month = {Tue Dec 31 00:00:00 EST 1996}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: