Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Control technology for fine-particulate emissions. [71 references; novel devices considered but rejected]

Technical Report ·
DOI:https://doi.org/10.2172/6023391· OSTI ID:6023391

This report presents a detailed review and critical evaluation of current control technologies as applied to fine particulate emissions from coal-fired utility boilers. Topics reviewed are: sources and characteristics of coals and fly ash; performance characteristics of various types of coal-fired utility boilers; design, operation, performance and maintenance features of the conventional control devices (electrostatic precipitator, fabric filter baghouse, wet scrubber), and descriptions of (and where available, performance data on) novel control devices. The report also includes quantitative assessments of the capabilities of both conventional novel devices to meet three different performance standards - the present New Source Performance Standard (NSPS) of 0.1 lb particulate per MBtu heat input, and standards of 0.05 and 0.03 lb particulate per MBtu. Each of the three conventional devices is compared and rated with respect to eight different performance categories. This information is presented in charts, which can be used to determine the relative effectiveness and attractiveness of these three control devices. The novel devices are compared and rated in the same manner. The major conclusions of the report are: (1) The use of conventional scrubbers for fine particulate control on coal-fired utility boilers will no longer be feasible should a more stringent NSPS be promulgated. (2) At the present NSPS, conventional electrostatic precipitators and baghouses are competitive. For a stricter standard, however, the baghouse will become a more attractive alternative than the precipitator. (3) Novel devices appear to offer almost no hope for this particular application (at a commercial level) between now and 1985 and only little hope before 1990.

Research Organization:
Manhattan Coll., New York (USA). Dept. of Chemical Engineering
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
6023391
Report Number(s):
ANL/ECT-5
Country of Publication:
United States
Language:
English