Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure

Journal Article · · Journal of Heat Transfer (Transactions of the ASME (American Society of Mechanical Engineers), Series C); (United States)
DOI:https://doi.org/10.1115/1.3248089· OSTI ID:6018773
; ;  [1]
  1. Purdue Univ., West Lafayette, IN (United States)

A numerical and experimental study is performed to analyze the steady-state natural convection fluid flow and heat transfer in a vertical rectangular enclosure that is partially filled with a vertical layer of a fluid-saturated porous medium. The flow in the porous layer is modeled utilizing the Brinkman-Forchheimer-extended Darcy equations. The numerical model is verified by conducting a number of experiments, with spherical glass beads as the porous medium and water and glycerin as the fluids, in rectangular test cells. The agreement between the flow visualization results and temperature measurements and the numerical model is, in general, good. It is found that the amount of fluid penetrating from the fluid region into the porous layer depends strongly on the Darcy (Da) and Rayleigh (Ra) numbers. For a relatively low product of Ra {times} Da, the flow takes place primarily in the fluid layers, and heat transfer in the porous layer is by conduction only. On other hand, fluid penetrating into a relatively highly permeable porous layer has a significant impact on the natural convection flow patterns in the entire enclosure.

OSTI ID:
6018773
Journal Information:
Journal of Heat Transfer (Transactions of the ASME (American Society of Mechanical Engineers), Series C); (United States), Journal Name: Journal of Heat Transfer (Transactions of the ASME (American Society of Mechanical Engineers), Series C); (United States) Vol. 109:2; ISSN 0022-1481; ISSN JHTRA
Country of Publication:
United States
Language:
English

Similar Records

Natural convection in horizontal porous layers: Effects of Darcy and Prandtl numbers
Journal Article · Tue Oct 31 23:00:00 EST 1989 · Journal of Heat Transfer (Transactions of the ASME (American Society of Mechanical Engineers), Series C); (United States) · OSTI ID:6102689

A numerical study of non-Darcian natural convection in a vertical enclosure filled with a porous medium
Journal Article · Tue Dec 31 23:00:00 EST 1985 · Numer. Heat Transfer; (United States) · OSTI ID:6946412

Natural convection in a porous media inside rectangular enclosures where one of the vertical walls is cooled by external free convection
Conference · Fri Jul 01 00:00:00 EDT 1983 · HTD (Publ.) (Am. Soc. Mech. Eng.); (United States) · OSTI ID:5345553