skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The effect of volume on the tensile strength of several nuclear-grade graphites

Conference ·
OSTI ID:6009617

This report will present the results of a study on the effects of stress volume on the tensile strength of two nuclear-grade graphites. The materials selected were H-451, an extruded near-isotropic graphite manufactured by Great Lakes Carbon Corporation, and IG-110, a fine-grained isotropic molded graphite manufactured by Toyo Tanso Company, Ltd. The tensile properties of H-451 were examined extensively in the past in order to characterize the variability of strength within billets, between billets, and between lots. But, the variability within a billet was, for the most part, studied only casually. The problem was the strong influence of a limited sampling plan in describing the mean strength and the variability. Therefore, an extensive, statistically sound sampling plan has been devised to fully characterize the spatial variability within a single billet. The effects of stress volume are being reexamined by comparing the strengths of four specimen sizes covering a broad range in stress volume. Two models will be employed for analysis of the stress volume data for the selected graphites. The popular Weibull model has previously been found to grossly overestimate the volume dependence of the strength of H-451 graphite. The model will be reevaluated using the improved statistical distribution of strength expected from the current sampling plan. A new fracture model developed by Burchell and Tucker has potential for determining the effect of stress volume on the tensile strength of graphite. This probabilistic failure criterion combines a microstructural basis with a fracture-mechanics approach to failure. An initial evaluation of H-451 data showed that the model closely predicted the mean tensile strength for the two smaller specimen sizes. 9 refs., 24 figs., 1 tab.

Research Organization:
Oak Ridge National Lab., TN (United States)
Sponsoring Organization:
USDOE; USDOE, Washington, DC (United States)
DOE Contract Number:
AC05-84OR21400
OSTI ID:
6009617
Report Number(s):
CONF-9109266-4; ON: DE91018859
Resource Relation:
Conference: International Atomic Energy Agency (IAEA) specialists meeting on status of graphite development for gas-cooled reactors, Tokai (Japan), 9-12 Sep 1991
Country of Publication:
United States
Language:
English