Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Evaluation of soil-gas transport of organic chemicals into residential buildings: Final report

Technical Report ·
DOI:https://doi.org/10.2172/6006558· OSTI ID:6006558
This investigation consisted of theoretical, laboratory, and field study phases with the overall objective of determining the importance of pressure-driven flow of soil gas in the transport of volatile organic compounds (VOC) from soil into a house. In the first phase, the mechanisms of advection, diffusion, and retardation of VOC in soil were evaluated. Using the theory of fluid mechanics and empirical for equilibrium partitioning of VOC among gas, aqueous, and solid phase of soil, a one-dimensional advection-diffusion equation or the transport of gas-phase VOC through soil was developed. An experimental apparatus and method were developed for the direct observation of pressure-driven transport of VOC through soil under controlled laboratory conditions. The retardation of sulfur hexafluoride (SF/sub 6/) and hexafluorobenzene with respect to the flow of the bulk gas was measured in soil-column experiments using different soils and soil-moisture conditions. The results were in good agreement with theoretical predictions. Since SF/sub 6/ was not lost by sorption to soil, it was selected for use as a tracer gas in the field study to study the advective flow of soil gas. The overall objective of the investigation was directly addressed by the field study. This study was conducted at a house which has a basement and which was located adjacent to a covered municipal landfill. The soil at the site was characterized, pressure coupling between the basement and surrounding soil was measured, the entry rate of soil gas as a function of basement depressurization was measured, and VOC in soil gas, indoor air and outdoor air were quantified. 46 refs., 18 figs., 11 tabs.
Research Organization:
Lawrence Berkeley Lab., CA (USA)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
6006558
Report Number(s):
LBL-25465; ON: DE89013394
Country of Publication:
United States
Language:
English