skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Patient risk from interproximal radiography

Abstract

Computer simulation methods for determining patient dose from dental radiography have demonstrated that patient risk from a two-film interproximal examination ranges from 1.1 X 10(-8) to 3.4 X 10(-7) using 90-kVp beams, depending on film speed, projection technique, and age and sex of the patient. Further, changing from a short-cone round-beam to a long-cone technique with rectangular collimation reduces risk by a factor of 2.9, independent of other factors.

Authors:
; ; ; ;
Publication Date:
Research Org.:
Vanderbilt Univ. Medical Center, Nashville, TN
OSTI Identifier:
5999873
Resource Type:
Journal Article
Resource Relation:
Journal Name: Oral Surg., Oral Med., Oral Pathol.; (United States); Journal Volume: 58:3
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; BIOMEDICAL RADIOGRAPHY; RADIATION HAZARDS; PATIENTS; RADIATION DOSES; AGE DEPENDENCE; COMPUTERIZED SIMULATION; DENTISTRY; RISK ASSESSMENT; SEX DEPENDENCE; DIAGNOSTIC TECHNIQUES; DOSES; HAZARDS; HEALTH HAZARDS; MEDICINE; NUCLEAR MEDICINE; RADIOLOGY; SIMULATION; 550602* - Medicine- External Radiation in Diagnostics- (1980-)

Citation Formats

Gibbs, S.J., Pujol, A. Jr., Chen, T.S., Malcolm, A.W., and James, A.E. Jr.. Patient risk from interproximal radiography. United States: N. p., 1984. Web. doi:10.1016/0030-4220(84)90066-5.
Gibbs, S.J., Pujol, A. Jr., Chen, T.S., Malcolm, A.W., & James, A.E. Jr.. Patient risk from interproximal radiography. United States. doi:10.1016/0030-4220(84)90066-5.
Gibbs, S.J., Pujol, A. Jr., Chen, T.S., Malcolm, A.W., and James, A.E. Jr.. 1984. "Patient risk from interproximal radiography". United States. doi:10.1016/0030-4220(84)90066-5.
@article{osti_5999873,
title = {Patient risk from interproximal radiography},
author = {Gibbs, S.J. and Pujol, A. Jr. and Chen, T.S. and Malcolm, A.W. and James, A.E. Jr.},
abstractNote = {Computer simulation methods for determining patient dose from dental radiography have demonstrated that patient risk from a two-film interproximal examination ranges from 1.1 X 10(-8) to 3.4 X 10(-7) using 90-kVp beams, depending on film speed, projection technique, and age and sex of the patient. Further, changing from a short-cone round-beam to a long-cone technique with rectangular collimation reduces risk by a factor of 2.9, independent of other factors.},
doi = {10.1016/0030-4220(84)90066-5},
journal = {Oral Surg., Oral Med., Oral Pathol.; (United States)},
number = ,
volume = 58:3,
place = {United States},
year = 1984,
month = 9
}
  • The problem of neutrons produced by many of the high-energy x-ray therapy machines (10 MV and above) is reviewed, and the possible risk their presence poses to radiotherapy patients is estimated. A review of the regulatory background containing a summary of the recommendations of the U. S. Council of State Governments (USCSG), and of the International Electro-Technical Commission (IEC), as well as an indication that recommendations will be forthcoming from the National Council on Radiation Protection (NCRP) and the International Commission of Radiological Protection (ICRP) is presented. The neutrons in question are produced by high-energy photons (x rays) incident onmore » the various materials of the target, flattening filter, collimators, and other essential components of the equipment. The neutron yield (per treatment dose) increases rapidly as the megavoltage is increased from 10 to 20 MV, but remains approximately constant above this. Measurements and calculations of the quantity, quality, and spatial distribution of these neutrons and their concomitant dose are summarized. Values of the neutron dose are presented as entrance dose, midline dose (10-cm depth), and integral dose, both within and outside of the treatment volume. These values are much less than the unavoidable photon doses which are largely responsible for treatment side effects. For typical equipment, the average neutron integral dose from accelerator-produced neutrons is about 4--7 g cGy (per treatment cGy), depending on the treatment plan. This translates into an average dose of neutrons (averaged over the body of a typical 70-kg (154 1b) patient) of 0.06--0.10 cGy for a treatment of 1000 cGy.« less
  • The problem of neutrons produced by many of the high-energy x-ray therapy machines (10 MV and above) is reviewed, and the possible risk their presence poses to radiotherapy patients is estimated. A review of the regulatory background containing a summary of the recommendations of the U.S. Council of State Governments (USCSG), and of the International Electro-Technical Commission (IEC) is presented. The neutrons in question are produced by high-energy photons (x rays) incident on the various materials of the target, flattening filter, collimators, and other essential components of the equipment. The neutron yield (per treatment dose) increases rapidly as the megavoltagemore » is increased from 10 to 20 MV, but remains approximately constant above this. Measurements and calculations of the quantity, quality, and spatial distribution of these neutrons and their concomitant dose are summarized. Values of the neutron dose are presented as entrance dose, midline dose (10-cm depth), and integral dose, both within and outside of the treatment volume. For typical equipment, the average neutron integral dose from accelerator-produced neutrons is about 4-7 g cGy (per treatment cGy), depending on the treatment plan. This translates into an average dose of neutrons (averaged over the body of a typical 70-kg (154 lb) patient) of 0.06-0.10 cGy for a treatment of 1000 cGy. Using these neutron doses and the best available neutron risk coefficients, it is estimated that 50 X 10(-6) fatal malignancies per year due to the neutrons may follow a typical treatment course of 5000 rads of 25-MV x rays. This is only about 1/60th of the average incidence of malignancies for the general population. Thus, the cancer risk to the radiotherapy patient from accelerator-produced neutrons poses an additional risk to the patient that is negligible in comparison.« less
  • Purpose: To estimate the risk of a second malignancy after treatment of a primary brain cancer using passive scattered proton beam therapy. The focus was on the cancer risk caused by neutrons outside the treatment volume and the dependency on the patient's age. Methods and Materials: Organ-specific neutron-equivalent doses previously calculated for eight different proton therapy brain fields were considered. Organ-specific models were applied to assess the risk of developing solid cancers and leukemia. Results: The main contributors (>80%) to the neutron-induced risk are neutrons generated in the treatment head. Treatment volume can influence the risk by up to amore » factor of {approx}2. Young patients are subject to significantly greater risks than are adult patients because of the geometric differences and age dependency of the risk models. Breast cancer should be the main concern for females. For males, the risks of lung cancer, leukemia, and thyroid cancer were significant for pediatric patients. In contrast, leukemia was the leading risk for an adult. Most lifetime risks were <1% (70-Gy treatment). The only exceptions were breast, thyroid, and lung cancer for females. For female thyroid cancer, the treatment risk can exceed the baseline risk. Conclusion: The risk of developing a second malignancy from neutrons from proton beam therapy of a brain lesion is small (i.e., presumably outweighed by the therapeutic benefit) but not negligible (i.e., potentially greater than the baseline risk). The patient's age at treatment plays a major role.« less
  • Purpose: Anatomy contouring is critical in radiation therapy. Inaccuracy and variation in defining critical volumes will affect everything downstream: treatment planning, dose-volume histogram analysis, and contour-based visual guidance used in image-guided radiation therapy. This study quantified: (1) variation in the contouring of organs at risk (OAR) in a clinical test case and (2) corresponding effects on dosimetric metrics of highly conformal plans. Methods and Materials: A common CT data set with predefined targets from a patient with oropharyngeal cancer was provided to a population of clinics, which were asked to (1) contour OARs and (2) design an intensity-modulated radiation therapymore » plan. Thirty-two acceptable plans were submitted as DICOM RT data sets, each generated by a different clinical team. Using those data sets, we quantified: (1) the OAR contouring variation and (2) the impact this variation has on dosimetric metrics. New technologies were employed, including a software tool to quantify three-dimensional structure comparisons. Results: There was significant interclinician variation in OAR contouring. The degree of variation is organ-dependent. We found substantial dose differences resulting strictly from contouring variation (differences ranging from -289% to 56% for mean OAR dose; -22% to 35% for maximum dose). However, there appears to be a threshold in the OAR comparison metric beyond which the dose differences stabilize. Conclusions: The effects of interclinician variation in contouring organs-at-risk in the head and neck can be large and are organ-specific. Physicians need to be aware of the effect that variation in OAR contouring can play on the final treatment plan and not restrict their focus only to the target volumes.« less
  • Purpose: To determine patient-specific absorbed peak doses to skin, eye lens, brain parenchyma, and cranial red bone marrow (RBM) of adult individuals subjected to low-dose brain perfusion CT studies on a 256-slice CT scanner, and investigate the effect of patient head size/shape, head position during the examination and bowtie filter used on peak tissue doses. Methods: The peak doses to eye lens, skin, brain, and RBM were measured in 106 individual-specific adult head phantoms subjected to the standard low-dose brain perfusion CT on a 256-slice CT scanner using a novel Monte Carlo simulation software dedicated for patient CT dosimetry. Peakmore » tissue doses were compared to corresponding thresholds for induction of cataract, erythema, cerebrovascular disease, and depression of hematopoiesis, respectively. The effects of patient head size/shape, head position during acquisition and bowtie filter used on resulting peak patient tissue doses were investigated. The effect of eye-lens position in the scanned head region was also investigated. The effect of miscentering and use of narrow bowtie filter on image quality was assessed. Results: The mean peak doses to eye lens, skin, brain, and RBM were found to be 124, 120, 95, and 163 mGy, respectively. The effect of patient head size and shape on peak tissue doses was found to be minimal since maximum differences were less than 7%. Patient head miscentering and bowtie filter selection were found to have a considerable effect on peak tissue doses. The peak eye-lens dose saving achieved by elevating head by 4 cm with respect to isocenter and using a narrow wedge filter was found to approach 50%. When the eye lies outside of the primarily irradiated head region, the dose to eye lens was found to drop to less than 20% of the corresponding dose measured when the eye lens was located in the middle of the x-ray beam. Positioning head phantom off-isocenter by 4 cm and employing a narrow wedge filter results in a moderate reduction of signal-to-noise ratio mainly to the peripheral region of the phantom. Conclusions: Despite typical peak doses to skin, eye lens, brain, and RBM from the standard low-dose brain perfusion 256-slice CT protocol are well below the corresponding thresholds for the induction of erythema, cataract, cerebrovascular disease, and depression of hematopoiesis, respectively, every effort should be made toward optimization of the procedure and minimization of dose received by these tissues. The current study provides evidence that the use of the narrower bowtie filter available may considerably reduce peak absorbed dose to all above radiosensitive tissues with minimal deterioration in image quality. Considerable reduction in peak eye-lens dose may also be achieved by positioning patient head center a few centimeters above isocenter during the exposure.« less