Solute segregation at grain boundaries in superplastic SiO{sub 2}-doped TZP
- Univ. of Tokyo (Japan). Dept. of Materials Science
Grain boundary structure, chemical composition, and bonding state in superplastic SiO{sub 2}-doped TZP and undoped TZP were investigated by high resolution electron microscopy (HREM), energy dispersive X-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS) using a field emission type transmission electron microscope (FE-TEM). No amorphous phase was observed at any grain boundaries in either SiO{sub 2}-doped TZP or undoped TZP. Yttrium ions segregated over a width of 4--6 nm at grain boundaries in both materials, and silicon ions segregated over a width of 5--8 nm at grain boundaries in SiO{sub 2}-doped TZP. The average dihedral angle between grain boundaries in SiO{sub 2}-doped TZP was as high as 80{degree}, which agreed well with the fact that no grain boundary had glass phase. The strain energy is accumulated by the dissolution of silicon ions into the tetragonal zirconia lattice. However, the grain boundary energy of SiO{sub 2}-doped TZP is likely to be low enough to compensate the increase of strain energy near grain boundaries. O-K-edge EELS spectra taken from grain boundaries in SiO{sub 2}-doped TZP were shifted 3--4 eV to the higher energy side in comparison with those from the grain interior. This may suggest that the chemical bonding is strengthened at grain boundaries by the presence of solute silicon. The strengthening may be responsible for the enhanced superplasticity in SiO{sub 2}-doped TZP.
- OSTI ID:
- 599735
- Journal Information:
- Acta Materialia, Journal Name: Acta Materialia Journal Issue: 12 Vol. 45; ISSN 1359-6454; ISSN ACMAFD
- Country of Publication:
- United States
- Language:
- English
Similar Records
Superplasticity in 3Y-TZP doped with small amounts of copper oxide
Influence of amorphous grain boundary phases on the superplastic behavior of 3-mol%-yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP)