Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Dynamic process modeling with recurrent neural networks

Journal Article · · AIChE Journal (American Institute of Chemical Engineers); (United States)
;  [1]
  1. Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering

Mathematical models play an important role in control system synthesis. However, due to the inherent nonlinearity, complexity and uncertainty of chemical processes, it is usually difficult to obtain an accurate model for a chemical engineering system. A method of nonlinear static and dynamic process modeling via recurrent neural networks (RNNs) is studied. An RNN model is a set of coupled nonlinear ordinary differential equations in continuous time domain with nonlinear dynamic node characteristics as well as both feed forward and feedback connections. For such networks, each physical input to a system corresponds to exactly one input to the network. The system's dynamics are captured by the internal structure of the network. The structure of RNN models may be more natural and attractive than that of feed forward neural network models, but computation time for training is longer. Simulation results show that RNNs can learn both steady-state relationships and process dynamics of continuous and batch, single-input/single-output and multi-input/multi-output systems in a simple and direct manner. Training of RNNs shows only small degradation in the presence of noise in the training data. Thus, RNNs constitute a feasible alternative to layered feed forward back propagation neural networks in steady-state and dynamic process modeling and model-based control.

OSTI ID:
5996396
Journal Information:
AIChE Journal (American Institute of Chemical Engineers); (United States), Journal Name: AIChE Journal (American Institute of Chemical Engineers); (United States) Vol. 39:10; ISSN 0001-1541; ISSN AICEAC
Country of Publication:
United States
Language:
English

Similar Records

Noise-enhanced categorization in a recurrently reconnected neural network
Journal Article · Mon Feb 28 23:00:00 EST 2005 · Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics · OSTI ID:20641378

Machine‐learning‐based construction of barrier functions and models for safe model predictive control
Journal Article · Wed Oct 06 00:00:00 EDT 2021 · AIChE Journal · OSTI ID:1824904

Physics-informed machine learning modeling for predictive control using noisy data
Journal Article · Tue Jul 26 00:00:00 EDT 2022 · Chemical Engineering Research and Design · OSTI ID:2424561