skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Preparation of zirconia coatings by hydrolysis of zirconium alkoxide with hydrogen peroxide

Journal Article · · Journal of the American Ceramic Society; (United States)

Zirconia has gained a great deal of attention because of its superior properties of mechanical strength, chemical resistance, and ionic conductivity. Zirconia coatings and thin films are receiving attention as tribological and thermal barrier coatings for engines, high-reflective coatings, solid electrolytes for fuel cells, oxygen sensors, etc. The sol-gel coating method has several advantages, such as low processing temperatures, homogeneity, control of micro-structure, and good productivity compared to chemical vapor deposition and physical vapor deposition. However, there are few reports concerning the preparation of zirconia coatings and thin films by the sol-gel method. Up to the present, zirconia coatings have been prepared from zirconium propoxide (not heated), zirconium tetrabutoxide modified by acetylacetone and ethyl acetoacetate, zirconium diethoxydichloride (ZrCl[sub 2](OC[sub 2]H[sub 5])[sub 2]), and a hydrosol prepared from a zirconium oxychloride solution. Coatings of 8.8-mol%-yttria-doped zirconia were fabricated using a transparent and spinnable sol prepared by hydrolysis of zirconium alkoxide with hydrogen peroxide and nitric acid. The sol gave a crack-free coating film consisting of fine grains. The crystalline phase was cubic after heating of 1,000 and 1,200 C and cubic and tetragonal at 1,350 C, with the coating being highly oriented in the (111) plane, especially at 1,000 C. Activation energy of the coating films was higher than that of the bulk. Transmittance through a film thickness of about 0.3 [mu]m on each side was 75%.

OSTI ID:
5989636
Journal Information:
Journal of the American Ceramic Society; (United States), Vol. 76:4; ISSN 0002-7820
Country of Publication:
United States
Language:
English