Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Geometric construction of extended supergravity

Thesis/Dissertation ·
OSTI ID:5984538

This work describes the explict construction of the locally SO(4)-invariant, on-shell de Sitter supergravity. First, aspects of classical differential geometry used in the construction of local gauge theories are reviewed. Emphasis is placed on fiber bundles and their uses in Yang-Mills and Einstein theories. Next, the extension of the formalism to differential supergeometry is outlined. Applications to extended supergravities are discussed. Finally, the O(4) deSitter supergravity is obtained by considering a bundle of frames constructed using the orthosymplectic superalgebra osp(4/4). The structure group of this bundle is Sl(2C) x SO(4) and the tangent space to the base supermanifold is homeomorphic to the coset osp(4/4)/sl(2C) x so(4). Constraints taken into the Bianchi identifies yield a realization of the superalgebra in the function space of connections, vielbeins, curvatures and torsions of the bundle. Auxiliary fields, transformation laws and equations of motion are determined. Consistency of the realization is verified, proving closure of the algebra. The associated Poincare supergravity is obtained by a contraction.

Research Organization:
Yale Univ., New Haven, CT (USA)
OSTI ID:
5984538
Country of Publication:
United States
Language:
English