skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The relationship between constraint and ductile fracture initiation as defined by micromechanical analyses

Conference ·
OSTI ID:597661
 [1];  [2]
  1. National Aeronautics and Space Administration, Moffett Field, CA (United States). Ames Research Center
  2. Stanford Univ., CA (United States). Design Div.

The overall objective of this study is to provide a proven methodology to allow the transfer of ductile fracture initiation properties measured in standard laboratory specimens to large, complex, flawed structures. A significant part of this work involved specifically addressing the effects of constrain on transferability under large scale yielding conditions. The approach taken was to quantify constrain effects through micromechanical fracture models coupled with finite element generated crack tip stress-strain fields to identify the local condition corresponding to fracture initiation. Detailed finite element models predicted the influence of specimen geometry, loading mode, and material flow properties on the crack tip fields. The ability of two local, ductile fracture models (the Rice and Tracey void growth model (VGM) and the stress-modified, critical strain (SMCS) criterion of Mackenzie et al. and Hancock and Cowling) to predict fracture initiation were investigated. Predictions were made using experimentally verified, two- and three-dimensional, finite strain, large deformation, finite element analyses. Two, high toughness pressure vessel steels were investigated: A516 Gr70, a ferritic, carbon-manganese mild steel demonstrating high hardening behavior, and HY-80, a martensitic, high strength low alloy (HSLA) steel possessing medium hardening ability. Experimental verification of the ductile fracture initiation predictions was performed in a variety of crack geometries possessing a range of a/w ratios from 0.15 to 0.70 and experiencing a range of load conditions from three point bending to nearly pure tension. The predicted constrain dependence of global ductile fracture parameters in the two materials is shown.

OSTI ID:
597661
Report Number(s):
CONF-9406335-; TRN: IM9812%%122
Resource Relation:
Conference: 26. national symposium on fracture mechanics, Idaho Falls, ID (United States), 28-30 Jun 1994; Other Information: PBD: 1995; Related Information: Is Part Of Fracture mechanics: 26. volume; Reuter, W.G. [ed.] [Lockheed Martin Idaho Technologies, Idaho Falls, ID (United States)]; Underwood, J.H. [ed.] [Army Armament Research and Development Center, Watervliet, NY (United States)]; Newman, J.C. Jr. [ed.] [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center]; PB: 853 p.; ASTM special technical publication 1256
Country of Publication:
United States
Language:
English