Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

PIGMI: a design report for Pion Generator for Medical Irradiations

Technical Report ·
DOI:https://doi.org/10.2172/5946080· OSTI ID:5946080
PIGMI (Pion Generator for Medical Irradiations) is an integrated linear accelerator (linac) system developed under the auspices of the National Cancer Institute for specific application to cancer treatment in a hospital environment. In its full configuration, PIGMI is a proton linac that is far smaller, less expensive, and more reliable than previous machines that produce pions. Subsets of PIGMI technology can be used with equal advantage to generate beams of other particles (such as neutrons, protons, or heavy ions) that may be of interest for radiotherapy, radioisotope production, or other applications. The dramatic performance and cost advantages of this new breed of acceleraor result from a number of improvements. In the low-energy portion of the machine, a new type of low-energy linac (the radio-frequency quadrupole(RFQ)) produces an exceptionally good quality beam, and uses a very simple 30-kV injector. In the second part of the machine (the drift-tube linac (DTL)), high accelerating gradients are now achievable with consequent reductions in machine length. Another new structure (the disk and washer (DAW)) will be used in the third and final section of the accelerator; this portion will also be relatively short and require few power amplifiers. The entire machine is designed for ease of operation and high reliability. The pion-production machine, discussed in this report, accelerates a 100-..mu..A average proton-beam current to 650 MeV; use of an efficient pion-collection channel would result in an average pion flux of over 100 rad/min in a volume of about 1 l. Pion-channel design is not treated in this report. Accelerator construction cost is estimated at $10 million (1980 dollars); site preparation and treatment facility costs would bring the cost of a complete facility to an estimated $25 million.
Research Organization:
Los Alamos National Lab., NM (USA)
DOE Contract Number:
W-7405-ENG-36
OSTI ID:
5946080
Report Number(s):
LA-8880; ON: DE82002519
Country of Publication:
United States
Language:
English