Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Denitrification and photosynthesis in stream sediment studied with microsensor and whole-core techniques

Journal Article · · Limnology and Oceanography; (United States)
The effect of light on benthic photosynthesis, denitrification, and assimilation of NH{sub 4}{sup +} and NO{sub 3}{sup {minus}} in stream sediments was studied with whole-core techniques and with O{sub 2} and N{sub 2}O microsensors. Photosynthetic oxygen production increased the thickness of the aerobic surface layer from 1.5 mm in the dark to {approximately} 3.5 mm at a light intensity saturating photosynthesis. The O{sub 2} flux change concurrently from net uptake to net release and the overall rate of denitrification was reduced by 70%. Denitrification was always restricted to a narrow zone immediately below the aerobic-anaerobic interface. Calculated NO{sub 3}{sup {minus}} microprofiles showed that overall denitrification was primarily dependent on the thickness of the aerobic layer which acted as a barrier for diffusion of NO{sub 3}{sup {minus}} from the overlying water. In the light, algal NO{sub 3}{sup {minus}} assimilation could exceed NO{sub 3}{sup {minus}} consumption by denitrification when availability of NH{sub 4}{sup +} was low. Assimilation of NO{sub 3}{sup {minus}}, however, had no influence on the flux of NO{sub 3}{sup {minus}} to the denitrification zone, since assimilation occurred relatively close to the sediment surface.
OSTI ID:
5945461
Journal Information:
Limnology and Oceanography; (United States), Journal Name: Limnology and Oceanography; (United States) Vol. 35:5; ISSN LIOCA; ISSN 0024-3590
Country of Publication:
United States
Language:
English