Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

New algorithm for constrained nonlinear least-squares problems. Part I

Technical Report ·
OSTI ID:5935436

A new Gauss-Newton algorithm is presented for solving nonlinear least squares problems. The problem statement may include simple bounds or more general constraints on the unknowns. The algorithm uses a trust region that allows the objective function to increase with logic for retreating to best values. The computations for the linear problem are done using a least squares system solver that allows for simple bounds and linear constraints. The trust region limits are defined by a box around the current point. In its current form the algorithm is effective only for problems with small residuals, linear constraints and dense Jacobian matrices. Results on a set of test problems are encouraging.

Research Organization:
Sandia National Labs., Albuquerque, NM (USA); Jet Propulsion Lab., Pasadena, CA (USA)
DOE Contract Number:
AC04-76DP00789
OSTI ID:
5935436
Report Number(s):
SAND-83-0936; ON: DE83016773
Country of Publication:
United States
Language:
English

Similar Records

Software performance on nonlinear least-squares problems
Technical Report · Thu Sep 01 00:00:00 EDT 1988 · OSTI ID:6716106

Linear least squares with bounds and linear constraints
Journal Article · Tue Jul 01 00:00:00 EDT 1986 · SIAM J. Sci. Stat. Comput.; (United States) · OSTI ID:5307272

A continuation approach for solving large-residual nonlinear least squares problems
Journal Article · Wed Jul 01 00:00:00 EDT 1987 · SIAM J. Sci. Stat. Comput.; (United States) · OSTI ID:6455390