Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Development, analysis, and control of the inductor-converter bridge

Technical Report ·
DOI:https://doi.org/10.2172/5922811· OSTI ID:5922811
The inductor-converter bridge (ICB) is a solid state dc-ac-dc power converter system for bidirectional, controllable, energy transfer between two high Q magnet coils. The ICB is suitable for supplying large pulsed power to such magnets as the superconducting equilibrium field (EF) coil of the proposed tokamak power reactors, from another superconducting energy storage coil. This report presents work on the analysis and control of the ICB system. The process of energy transfer between the coils is explained on the basis of a simple one line equivalent circuit. This circuit is the topological dual of the one line diagram of the nonsalient pole synchoronous generator, connected to the infinite bus through its synchronous reactance. The changes in the average power, average coil currents, and voltages, as functions of time, are calculated by the conventional Fourier method of analysis.
Research Organization:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
5922811
Report Number(s):
ANL/FPP/TM--144; ON: DE82001611
Country of Publication:
United States
Language:
English