Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

PDU scale nitrification/denitrification of pretreated coal gasification wastewater

Conference ·
OSTI ID:5915570
Cooling tower tests with the stripped gas liquor (SGL) demonstrated that biological treatment to reduce the organic loading was sufficient for satisfactory operation of the tower at 10 cycles of concentration. However, ammonia stripping remained at high levels, which could result in industrial hygiene and nuisance odor concerns, environmental damage and, after longer periods of acclimation, lead to biofouling in the cooling tower from nitrification. These concerns coupled dishcharge to receiving waters, prompted research into biological nitrogen removal. As a result of this research, the following conclusions have been drawn: (1) Great Plains Gasification Plant (GPGP) stripped gas liquor, pretreated by biological oxidation, can be nitrified. Complete nitrification can be obtained at influent concentrations of greater than 500 mg/1 as NH/sub 3/-N. (2) The highest removal rates and best system stability was found at the highest solids retention time (SRT). The low SRT reactor (12 days) did not attain stable operation until after approximately 110 days of operation. The ammonia removals during steady-state operation were 97.7%, 96.9% and 96.9%, respectively for reactors N1 through N3 (SRTs of 37, 21 and 12 days). (3) Influent ammonia-N spikes up to 1020 mg/l were observed. At these high levels, inhibition was observed at all three SRTs. However, when concentrations fell to typical values (500 mg/l NH/sub 3/-N) the systems recovered rapidly. (4) Denitrification of biologically treated and nitrified GPGP SGL was complete in an activated sludge reactor using a 4 day HRT, 10 day SRT and a 2.47:1 molar ratio of methanol to NO/sub 3/-N as the supplemental carbon source. (5) Nitrate-N concentrations in the influent greater than 750 mg/l were completely denitrified demonstrating a maximum observed specific removal rate of 92.8 mg NO/sub 3/-N/mg MLVSS-day. 16 refs., 10 figs., 4 tabs.
Research Organization:
North Dakota Univ., Grand Forks (USA). Energy Research Center
DOE Contract Number:
FC21-83FE60181
OSTI ID:
5915570
Report Number(s):
DOE/FE/60181-173; CONF-860527-1; ON: DE86010578
Country of Publication:
United States
Language:
English