skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optimization algorithms for large-scale multireservoir hydropower systems

Thesis/Dissertation ·
OSTI ID:5914643

Five optimization algorithms were vigorously evaluated based on applications on a hypothetical five-reservoir hydropower system. These algorithms are incremental dynamic programming (IDP), successive linear programing (SLP), feasible direction method (FDM), optimal control theory (OCT) and objective-space dynamic programming (OSDP). The performance of these algorithms were comparatively evaluated using unbiased, objective criteria which include accuracy of results, rate of convergence, smoothness of resulting storage and release trajectories, computer time and memory requirements, robustness and other pertinent secondary considerations. Results have shown that all the algorithms, with the exception of OSDP converge to optimum objective values within 1.0% difference from one another. The highest objective value is obtained by IDP, followed closely by OCT. Computer time required by these algorithms, however, differ by more than two orders of magnitude, ranging from 10 seconds in the case of OCT to a maximum of about 2000 seconds for IDP. With a well-designed penalty scheme to deal with state-space constraints, OCT proves to be the most-efficient algorithm based on its overall performance. SLP, FDM, and OCT were applied to the case study of Mahaweli project, a ten-powerplant system in Sri Lanka.

Research Organization:
Colorado State Univ., Fort Collins, CO (USA)
OSTI ID:
5914643
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English