Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A comparison between conventional and AMS [sup 14]C dates on basal salt marsh peats from coastal Maine. [Accelerator Mass Spectroscopy]

Conference · · Geological Society of America, Abstracts with Programs; (United States)
OSTI ID:5907412
;  [1]
  1. Univ. of Maine, Orono, ME (United States). Dept. of Geological Sciences

This study reports AMS dates from four Maine salt marshes: Webbannet Marsh (Wells), Morse and Sprague River marshes (Phippsburg), and Sanborn Cove marsh (Machiasport). The AMS dates are compared with conventional dates on bulk samples obtained from either the same cores or from other cores at comparable depths. Four AMS dates from the Webhannet and Sanborn Cove marshes were considerably older than their conventional counterparts, by as much as 1,000 years. Three causes for this age discrepancy are suggested. First, under slow rates of marsh accretion, peats remain within the root zone of modern plants for a relatively long period, causing a continued input of younger carbon. Intruded roots are undetectable in the highly macerated, 4,000--5,000 C-14 year old peats. Another source of contamination is the percolation of mobile humic acids along the impermeable Pleistocene substrate. Finally, a date on a bulk peat of 10 cm vertical extent represents an average age for a portion of peat that spans a time interval possibly of several centuries. The age difference between the bulk date and the AMS date from the base of the peat increases with decreasing rates of marsh accretion. The forested steep slopes of the upland surrounding the marsh seem a likely source of old carbon that can easily be washed onto the marsh surface. The slow rate of late-Holocene sea-level rise in Maine, as well as the geologic and hydrologic setting of the salt marshes, make conventional C-14 dating of salt marsh peats in Maine a problematic affair. This study implies that AMS dates may be needed to verify Holocene sea-level curves from other coastal areas that have hitherto been based solely on conventional C-14 peat dates.

OSTI ID:
5907412
Report Number(s):
CONF-921058--
Journal Information:
Geological Society of America, Abstracts with Programs; (United States), Journal Name: Geological Society of America, Abstracts with Programs; (United States) Vol. 24:7; ISSN GAAPBC; ISSN 0016-7592
Country of Publication:
United States
Language:
English