Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Insulin receptor autophosphorylation in BC/sub 3/H-1 whole cell assays is inhibited by the specific calmodulin inhibitors calmidazolium and W-7

Conference · · Fed. Proc., Fed. Am. Soc. Exp. Biol.; (United States)
OSTI ID:5904533
Recent reports suggest the involvement of Ca/sup + +/ and the Ca/sup + +/ binding protein calmodulin in the insulin stimulated receptor tyrosine kinase activity in cell free (adipocyte) phosphorylation systems. Working with the insulin-responsive well characterized muscle cell line BC/sub 3/H-1, they have investigated the effects of calmodulin antagonists on insulin receptor phosphorylation in cultured intact cells. BC/sub 3/H-1 myocytes were grown to confluency (10-12 days) then exposed to media containing /sup 32/P-orthophosphate for 24 hours (100 mCi/ml). Insulin treatment stimulated the phosphorylation of a 95K protein which is immunoprecipitable with antireceptor antibodies indicating insulin-induced phosphorylation of the insulin receptor beta subunit in vivo. This phosphorylation occurs rapidly within 30 minutes at physiologic insulin concentrations at 37/sup 0/C. Phosphorylation can also be stimulated by the B-10 anti-insulin receptor antibody (1:500). Pretreatment of cells for 30 min with 1uM calmidazolium (R24571) and 10nM W-7 (n-(6-AminoHexyl)-s-chloro-1-naphalenesulfonamide) each significantly inhibited insulin-stimulated phosphorylation. This would suggest that calmodulin may play a role in mediation of the insulin receptor tyrosine kinase activity in the BC/sub 3/H-1 myocyte.
Research Organization:
Univ. of South Florida College of Medicine, Tampa
OSTI ID:
5904533
Report Number(s):
CONF-870644-
Conference Information:
Journal Name: Fed. Proc., Fed. Am. Soc. Exp. Biol.; (United States) Journal Volume: 46:6
Country of Publication:
United States
Language:
English