skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reflection coefficient and permeability of urea and ethylene glycol in the human red cell membrane

Journal Article · · J. Gen. Physiol.; (United States)
DOI:https://doi.org/10.1085/jgp.81.2.239· OSTI ID:5894850

The reflection coefficient (sigma) and permeability (P) of urea and ethylene glycol were determined by fitting the equations of Kedem and Katchalsky (1958) to the change in light scattering produced by adding a permeable solute to a red cell suspension. The measurements incorporated three important modifications: (a) the injection artifact was eliminated by using echinocyte cells; (b) the use of an additional adjustable parameter (Km), the effective dissociation constant at the inner side of the membrane; (c) the light scattering is not directly proportional to cell volume (as is usually assumed) because refractive index and scattering properties of the cell depend on the intracellular permeable solute concentration. This necessitates calibrating for known changes in refractive index (by the addition of dextran) and cell volume (by varying the NaCl concentration). The best fit was for sigma . 0.95, Po . 8.3 X 10(-4) cm/s, and Km . 100 mM for urea and sigma . 1.0, Po . 3.9 X 10(-4) cm/s, and Km . 30 mM for ethylene glycol. The effects of the inhibitors copper, phloretin, p-chloromercuriphenylsulfonate, and 5,5'-dithiobis (2-nitro) benzoic acid on the urea, ethylene glycol, and water permeability were determined. The results suggest that there are three separate, independent transport systems: one for water, one for urea and related compounds, and one for ethylene glycol and glycerol.

Research Organization:
Department of Physiology, University of Minnesota, Minneapolis
OSTI ID:
5894850
Journal Information:
J. Gen. Physiol.; (United States), Vol. 81:2
Country of Publication:
United States
Language:
English