skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrochromic lithium nickel oxide thin film by pulsed laser deposition

Conference ·
OSTI ID:589266

* Thin films of lithium nickel oxide were deposited by pulsed laser deposition (PLD) from targets of pressed LiNiO{sub 2} powder with layered structure. The composition, structure and surface air sensitivity of these films were analyzed using a variety of techniques, such as nuclear reaction analysis, Rutherford backscattering spectrometry (RBS), x-ray diffraction, infrared spectroscopy, and atomic force microscopy. Optical properties were measured using a combination of variable angle spectroscopic ellipsometry and IP spectroradiometry. Crystalline structure, surface morphology and chemical composition of Li{sub x}Ni{sub 1-x}O thin films depend strongly on deposition oxygen pressure, temperature as well as substrate target distance. The films produced at temperatures lower than 600 degrees C spontaneously absorb CO{sub 2} and H{sub 2}O at their surface once they are exposed to the air. The films deposited at 600 degrees C proved to be stable in air over a long period. Even when deposited at room temperature the PLD films are denser and more stable than sputtered films. RBS determined that the best electrochromic films had the stoichiometric composition L{sub 0.5}Ni{sub 0.5}O when deposited at 60 mTorr O{sub 2} pressure. Electrochemical tests show that the films exhibit excellent reversibility in the range 1.0 V to 3.4 V versus lithium and long cyclic life stability in a liquid electrolyte half cell. Electrochemical formatting which is used to develop electrochromism in other films and nickel oxide films is not needed for these stoichiometric films. The optical transmission range is almost 70% at 550 nm for 120 nm thick films.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Assistant Secretary for Energy Efficiency and Renewable Energy, Washington, DC (United States)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
589266
Report Number(s):
LBNL-39593; CONF-961040-; OM-367; ON: DE98052703; TRN: 98:001847
Resource Relation:
Conference: 190. meeting of the Electrochemical Society and technical exhibition, San Antonio, TX (United States), 6-11 Oct 1996; Other Information: PBD: Oct 1996
Country of Publication:
United States
Language:
English