skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Eolian paleotopographic highs as stratigraphic traps: origin and distinction

Conference · · Am. Assoc. Pet. Geol., Bull.; (United States)
OSTI ID:5867286

Significant hydrocarbon accumulations occur where eolian paleotopographic highs are preserved beneath transgressive marine deposits. Paleotopographic highs can represent erosional remnants of an unconformity, or partly preserved eolian dunes, or combinations of both. Paleotopography reflects the extent of modification undergone by eolian units prior to or during transgression. Modification varies between extremes of (1) destruction - where eolian deposits are deeply eroded and the former dunal profile is lost, and (2) preservation - where dunes and interdune areas are preserved nearly intact. The extent of modification that occurs during transgression is controlled primarily by (1) the energy of the transgressing sea, (2) the speed of transgression, and (3) the abundance of sand-stabilizing early cements or plants. High-energy seas destroy dunes through persistent erosion by tides and waves and by initiating dune collapse and mass flowage of dune sands. Preservation occurs where quiescent seas flood interdune areas and create shallow to periodically emergent marine environments, such as interdune sabkhas or tidal flats. Gradual filling of interdune areas with shallow marine sediments can fortify and preserve adjacent dunes. These varied processes that interact between marine and eolian environments to create different types of topography are exemplified in ancient eolian-marine sequences of the Western Interior of North America, and preserved Holocene dunes of coastal Australia. Different types of eolian highs can be recognized by analysis of bounding surfaces in outcrop or core. An understanding of eolian-marine processes and environments that create topography allows for prediction of areas of potential stratigraphic traps.

Research Organization:
Chevron, Denver, CO
OSTI ID:
5867286
Report Number(s):
CONF-850322-
Journal Information:
Am. Assoc. Pet. Geol., Bull.; (United States), Vol. 69:2; Conference: American Association of Petroleum Geologists annual meeting, New Orleans, LA, USA, 25 Mar 1985
Country of Publication:
United States
Language:
English