Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Coal thermolysis modeling: The effects of restricted diffusion on thermal reaction pathways

Conference ·
OSTI ID:5864225

The technique of model compound immobilization by covalent surface attachment is being employed to investigate the potential impact of restricted diffusional mobility on the thermal reactivity of coal. This restricted mobility may be imposed in coal as a consequence of its cross-linked, macromolecular structure. A detailed study of the thermolysis of surface-immobilized bibenzyl showed that the rate of unimolecular C-C homolysis is similar to that in fluid phases. Recent studies have foucused on the thermally induced, free radical chain decomposition reactions for surface-immobilized 1,3-diphenylpropane and 1,4-diphenylbutane. For 1,4-diphenylbutane both the reaction rate and product composition are strongly dependent on surface coverage and, hence, the proximity of 1.4-diphenylbutane molecules and hydrogen abstracting radicals on the surface. The rates and selectivities of these key bimolecular reaction steps on the surface might also be affected by the structure of neighboring molecules. In the current study, we are beginning to probe this feature by examining the influence of the structure of co-attached aromatic molecules such as biphenyl and diphenylmethane on the reaction rate and regioselectivity in the thermolysis of 1,4-diphenylbutane. 7 refs. , 1 fig., 2 tabs.

Research Organization:
Oak Ridge National Lab., TN (USA)
DOE Contract Number:
AC05-84OR21400
OSTI ID:
5864225
Report Number(s):
CONF-890902-3; ON: DE89011229
Country of Publication:
United States
Language:
English