Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Low-cycle fatigue behavior of HT-9 alloy in a flowing-lithium environment

Conference ·
OSTI ID:5858813
Low-cycle fatigue data have been obtained on normalized/tempered or lithium-preexposed HT-9 alloy at 755 K in flowing lithium of controlled purity. The results show that the fatigue life of this material decreases with an increase in nitrogen content in lithium. A reduction in strain rate also decreases the fatigue life in high-nitrogen lithium. However, in the range from approx. 4 x 10/sup -4/ to 4 x 10/sup -2/ s/sup -1/, the strain rate has no effect on fatigue life in lithium containing <200 wppM nitrogen. The fatigue life of the HT-9 alloy in low-nitrogen lithium is significantly greater than the fatigue life of Fe-9Cr-1Mo steel or Type 403 martensitic steel in air. Furthermore, a 4.0-Ms preexposure to low-nitrogen lithium has no influence on fatigue life. The reduction in fatigue life in high-nitrogen lithium is attributed to internal corrosive attack of the material. The specimens tested in high-nitrogen lithium show internal corrosion along grain and martensitic lathe boundaries and intergranular fracture. This behavior is not observed in specimens tested in low-nitrogen lithium. Results for a constant-load corrosion test in flowing lithium are also presented.
Research Organization:
Argonne National Lab., IL (USA)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
5858813
Report Number(s):
CONF-830659-4; ON: DE83014819
Country of Publication:
United States
Language:
English