Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Wavelengths effective in induction of malignant melanoma

Journal Article · · Proceedings of the National Academy of Sciences of the United States of America; (United States)
; ; ;  [1]
  1. Brookhaven National Laboratory, Upton, NY (United States)
It is generally agreed that sunlight exposure is one of the etiologic agents in malignant melanoma of fair-skinned individuals. However, the wavelengths responsible for tumorigenesis are not known, although DNA is assumed to be the target because individuals defective in the repair of UV damage to DNA are several thousandfold more prone to the disease than the average population. Heavily pigmented back-cross hybrids of the genus Xiphophorus (platyfish and swordtails) are very sensitive to melanoma induction by single exposures to UV. The authors irradiated groups of five 6-day-old fish with narrow wavelength bands at 302, 313, 365, 405, and 436 nm and score the irradiated animals for melanomas 4 months later. They used several exposures at each wavelength to obtain estimates of the sensitivity for melanoma induction as a function of exposure and wavelength. The action spectrum (sensitivity per incident photon as a function of wavelength) for melanoma induction shows appreciable sensitivity at 365, 405, and probably 436 nm, suggesting that wavelengths not absorbed directly in DNA are effective in induction. They interpret the results as indicating that light energy absorbed in melanin is effective in inducing melanomas in this animal model and that, in natural sunlight, 90-95% of melanoma induction may be attributed to wavelengths >320 nm-the UV-A and visible spectral regions. 25 refs., 4 figs., 1 tab.
OSTI ID:
5838013
Journal Information:
Proceedings of the National Academy of Sciences of the United States of America; (United States), Journal Name: Proceedings of the National Academy of Sciences of the United States of America; (United States) Vol. 90:14; ISSN PNASA6; ISSN 0027-8424
Country of Publication:
United States
Language:
English