Formaldehyde activation factor, tetrahydromethanopterin, a coenzyme of methanogenesis
An oxygen-labile formaldehyde activation factor (FAF) was isolated in highly purified form by use of anoxic fractionation procedures. The molecular weight of FAF was determined to be 776 and that of methanopterin (MPT) 772 by fast-atom-bombardment mass spectrometry (FABMS). High-resolution FABMS measurements on MPT and FAF indicated molecular formulas of C/sub 30/H/sub 41/N/sub 6/O/sub 16/P and C/sub 30/H/sub 45/N/sub 6/O/sub 16/P, respectively. The presence of phosphorus was confirmed by 100-MHz /sup 31/P NMR. The 360-MHz /sup 1/H NMR spectrum of FAF in deuterium oxide was similar to that of MPT. A functional relationship between MPT and FAF was documented; both compounds stimulated the reductive demethylation of 2-(methylthio)ethanesulfonic acid (CH/sub 3/-S-CoM) to CH/sub 4/ when formaldehyde oxidation provided a source of electrons, and FAF replaced MPT in the CH/sub 3/-S-CoM-stimulated conversion of CO/sub 2/ to CH/sub 4/ under H/sub 2/ (the RPG effect). MPT was enzymically converted to FAF during the reduction of CH/sub 3/-S-CoM, and HCHO to CH/sub 4/ under H/sub 2/. Evidence indicates that FAF is tetrahydromethanopterin. 14 references, 8 figures.
- Research Organization:
- Univ. of Illinois, Urbana
- OSTI ID:
- 5822835
- Journal Information:
- Proc. Natl. Acad. Sci. U.S.A.; (United States), Journal Name: Proc. Natl. Acad. Sci. U.S.A.; (United States) Vol. 81:7; ISSN PNASA
- Country of Publication:
- United States
- Language:
- English
Similar Records
Formaldehyde oxidation and methanogenesis. [Methanobacterium thermoautotrophicum; Methanococcus voltae; Methanococcus jannaschii]
Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium