skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Issues in Numerical Simulation of Fire Suppression

Abstract

This paper outlines general physical and computational issues associated with performing numerical simulation of fire suppression. Fire suppression encompasses a broad range of chemistry and physics over a large range of time and length scales. The authors discuss the dominant physical/chemical processes important to fire suppression that must be captured by a fire suppression model to be of engineering usefulness. First-principles solutions are not possible due to computational limitations, even with the new generation of tera-flop computers. A basic strategy combining computational fluid dynamics (CFD) simulation techniques with sub-grid model approximations for processes that have length scales unresolvable by gridding is presented.

Authors:
;
Publication Date:
Research Org.:
Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
5805
Report Number(s):
SAND99-0938C
TRN: AH200115%%117
DOE Contract Number:
AC04-94AL85000
Resource Type:
Conference
Resource Relation:
Conference: Halon Option Technical Working Conference, Albuquerque, NM (US), 04/27/1999--04/29/1999; Other Information: PBD: 12 Apr 1999
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; FIRE FIGHTING; COMPUTERIZED SIMULATION; COMBUSTION KINETICS; MATHEMATICAL MODELS; FLUID MECHANICS

Citation Formats

Tieszen, S.R., and Lopez, A.R. Issues in Numerical Simulation of Fire Suppression. United States: N. p., 1999. Web.
Tieszen, S.R., & Lopez, A.R. Issues in Numerical Simulation of Fire Suppression. United States.
Tieszen, S.R., and Lopez, A.R. Mon . "Issues in Numerical Simulation of Fire Suppression". United States. doi:. https://www.osti.gov/servlets/purl/5805.
@article{osti_5805,
title = {Issues in Numerical Simulation of Fire Suppression},
author = {Tieszen, S.R. and Lopez, A.R.},
abstractNote = {This paper outlines general physical and computational issues associated with performing numerical simulation of fire suppression. Fire suppression encompasses a broad range of chemistry and physics over a large range of time and length scales. The authors discuss the dominant physical/chemical processes important to fire suppression that must be captured by a fire suppression model to be of engineering usefulness. First-principles solutions are not possible due to computational limitations, even with the new generation of tera-flop computers. A basic strategy combining computational fluid dynamics (CFD) simulation techniques with sub-grid model approximations for processes that have length scales unresolvable by gridding is presented.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Apr 12 00:00:00 EDT 1999},
month = {Mon Apr 12 00:00:00 EDT 1999}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • One emphasis of weapon surety (safety and security) at Sandia National Laboratories is the assessment of fire-related risk to weapon systems. New developments in computing hardware and software make possible the application of a new generation of very powerful analysis tools for surety assessment. This paper illustrates the application of some of these computational tools to assess the robustness of a conceptual firing set design in severe thermal environments. With these assessment tools, systematic interrogation of the parameter space governing the thermal robustness of the firing set has revealed much greater vulnerability than traditional ad hoc techniques had indicated. Thesemore » newer techniques should be routinely applied in weapon design and assessment to produce more fully characterized and robust systems where weapon surety is paramount. As well as helping expose and quantify vulnerabilities in systems, these tools can be used in design and resource allocation processes to build safer, more reliable, more optimal systems.« less
  • Two-dimensional radiative gas dynamics model for numerical simulation of oxygen-hydrogen fire ball which may be generated by an explosion of a launch vehicle with cryogenic (LO{sub 2}-LH{sub 2}) fuel components is presented. The following physical-chemical processes are taken into account in the numerical model: and effective chemical reaction between the gaseous components (O{sub 2}-H{sub 2}) of the propellant, turbulent mixing and diffusion of the components, and radiative heat transfer. The results of numerical investigations of the following problems are presented: The influence of radiative heat transfer on fire ball gas dynamics during the first 13 sec after explosion, the effectmore » of the fuel gaseous components afterburning on fire ball gas dynamics, and the effect of turbulence on fire ball gas dynamics (in a framework of algebraic model of turbulent mixing).« less
  • A partial non-dimensionalization of the Navier-Stokes equations is used to obtain order of magnitude estimates of the rate-controlling transport processes in the reacting portion of a fire plume as a function of length scale. Over continuum length scales, buoyant times scales vary as the square root of the length scale; advection time scales vary as the length scale, and diffusion time scales vary as the square of the length scale. Due to the variation with length scale, each process is dominant over a given range. The relationship of buoyancy and baroclinc vorticity generation is highlighted. For numerical simulation, first principlesmore » solution for fire problems is not possible with foreseeable computational hardware in the near future. Filtered transport equations with subgrid modeling will be required as two to three decades of length scale are captured by solution of discretized conservation equations. By whatever filtering process one employs, one must have humble expectations for the accuracy obtainable by numerical simulation for practical fire problems that contain important multi-physics/multi-length-scale coupling with up to 10 orders of magnitude in length scale.« less
  • Using a three-dimensional numerical cloud/smoke-plume model, we have simulated the burning of a large, mid-latitude city following a nuclear exchange. The model includes 18 dynamic and microphysical equations that predict the fire-driven airflow, cloud processes, and smoke-cloud interactions. In the simulation, the intense heating from the burning city produces a firestorm with updraft velocities exceeding 60 m/s. Within 15 minutes of ignition, the smoke plume penetrates the tropopause. The updraft triggers a cumulonimbus cloud that produces significant quantities of ice, snow, and hail. These solid hydrometeors, as well as cloud droplets and rain, interact with the smoke particles from themore » fire. At the end of the one-hour simulation, over 20% of the smoke is in slowly falling snowflakes. If the snow reaches the ground before the flakes completely sublimate (or melt and then evaporate), then only approximately 50% of the smoke will survive the scavenging processes and remain in the atmosphere to affect the global climate.« less
  • The current trend towards the increased use of risk assessment in the regulation of nuclear power plants will inevitably result in changes in the analysis of fire protection systems and the methods of analysis. Before fire protection can be regulated on a risk basis, a consensus must be reached on a number of issues. One key issue is what types of computational tools will be allowable for analyzing fire events, and what types of scenarios those tools will be approved for use. Reaching this consensus will require an understanding of the types of computational tools available and their inherent advantagesmore » and disadvantages. To aid with this understanding, three different methods of fire simulation are applied to an oil pool fire test in the HDR (Heiss Dampf Reaktor) containment test facility. These methods are a hand calculation, the zone model code CFAST (Consolidated Model of Fire Growth and Smoke Transport), and the computational fluid dynamics code FDS (Fire Dynamics Simulator). Each is applied to a steady-state portion of the test using, to the extent possible, the same set of input parameters. The results of the computation are compared to the test data. The comparisons show that each method is potentially suitable for use depending on the information required from the simulation. Each method will potentially have a role to play in risk based regulation depending on the scenario. (authors)« less