skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Transient resonance Raman spectra of benzophenone and its four isotopic analogues in the lowest excited triplet state

Journal Article · · J. Phys. Chem.; (United States)
DOI:https://doi.org/10.1021/j100307a013· OSTI ID:5760650

Transient resonance Raman spectra of T/sub 1/ benzophenone (T/sub 1/BP) and its four isotopic analogues in carbon tetrachloride solutions were measured. Vibrational assignments of eight T/sub 1/ bands have been made on the basis of the observed isotopic frequency shifts. The assignments clarified the following three points concerning the structure of T/sub 1/ BP in solution. (1) The CO bond order in T/sub 1/ BP is much lower than that in the ground-state benzophenone (S/sub 0/ BP). The CO stretching frequency in T/sub 1/ is found to be 1222 cm/sup -1/, whereas the corresponding value in S/sub 0/ is 1665 cm/sup -1/. The former frequency indicates a single-bond-like character of the CO bonding in the T/sub 1/ state. (2) Vibrational frequencies of several ring modes show marked downshifts in going from S/sub 0/ to T/sub 1/. This suggests the delocalization of the ..pi..* electron into the ring part. (3) The assignment (1302 cm/sup -1/) of the symmetric C-phenyl stretch mode in the T/sub 1/ withdraws S/sub 0/ absorption spectrum is questioned. According to the present assignment, the frequency of this mode (approx. 1100 cm/sup -1/) is slightly lower than that in the ground state (1150 cm/sup -1/). The simple quantum chemical picture of T/sub 1/ BP, which predicted the increase of the C-phenyl bond order with the ..pi..* withdraws n excitation, should therefore be reconsidered.

Research Organization:
Univ. of Tokyo, Japan
OSTI ID:
5760650
Journal Information:
J. Phys. Chem.; (United States), Vol. 91:23
Country of Publication:
United States
Language:
English