Diagonalization of the chiral-invariant Gross-Neveu Hamiltonian
Journal Article
·
· Phys. Rev. Lett.; (United States)
The Hamiltonian of the chiral-invariant Gross-Neveu model is diagonalized, without approximation, using a modified Bethe Ansatz.
- Research Organization:
- Department of Physics, New York University, New York, New York 10003
- OSTI ID:
- 5755563
- Journal Information:
- Phys. Rev. Lett.; (United States), Journal Name: Phys. Rev. Lett.; (United States) Vol. 43:23; ISSN PRLTA
- Country of Publication:
- United States
- Language:
- English
Similar Records
Bethe-Ansatz construction of the Chiral-Invariant Gross-Neveu model
Dynamical generation of mass in a two-dimensional model
Chiral invariant gross-Neveu model: Classical versus quantum
Thesis/Dissertation
·
Thu Dec 31 23:00:00 EST 1981
·
OSTI ID:6760082
Dynamical generation of mass in a two-dimensional model
Journal Article
·
Sat Aug 01 00:00:00 EDT 1981
· Surv. High Energy Phys.; (United States)
·
OSTI ID:6556554
Chiral invariant gross-Neveu model: Classical versus quantum
Journal Article
·
Sat Oct 01 00:00:00 EDT 1983
· Ann. Phys. (N.Y.); (United States)
·
OSTI ID:5375423
Related Subjects
645400* -- High Energy Physics-- Field Theory
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
BOSONS
BOUNDARY CONDITIONS
CHIRAL SYMMETRY
COUPLING CONSTANTS
EIGENSTATES
ELEMENTARY PARTICLES
FUNCTIONS
GOLDSTONE BOSONS
HAMILTONIANS
LAGRANGIAN FUNCTION
MATHEMATICAL OPERATORS
POSTULATED PARTICLES
QUANTUM OPERATORS
RENORMALIZATION
SYMMETRY
THIRRING MODEL
VACUUM STATES
WAVE FUNCTIONS
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
BOSONS
BOUNDARY CONDITIONS
CHIRAL SYMMETRY
COUPLING CONSTANTS
EIGENSTATES
ELEMENTARY PARTICLES
FUNCTIONS
GOLDSTONE BOSONS
HAMILTONIANS
LAGRANGIAN FUNCTION
MATHEMATICAL OPERATORS
POSTULATED PARTICLES
QUANTUM OPERATORS
RENORMALIZATION
SYMMETRY
THIRRING MODEL
VACUUM STATES
WAVE FUNCTIONS