Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Use of microorganisms in enhanced oil recovery. First annual report, October 1, 1980-September 30, 1982

Technical Report ·
OSTI ID:5737680

Twenty-two isolates were obtained that produced bioemulsifiers or biopolymers when grown in a sucrose, 5% NaCl mineral salts medium at 50 C. Biopolymers were produced aerobically and anaerobically. Bacillus licheniformis, strain JF-2 cultures had the lowest surface tensions of the eleven bioemulsifer-producing isolates tested. Growth of strain JF-2 was not affected by NaCl concentrations up to 10%, pH values of 4.6 to 9.0, temperatures up to 50 C or the presence of crude oil. The surfactant produced by strain JF-2 was not affected by the pH, temperature, NaCl or calcium concentrations found in many oil reservoirs. These properties indicate that the surfactant produced by strain JF-2 has many properties suitable for enhanced oil recovery processes. The success of in situ microbial plugging process depends on the ability to transport the microbes throughout the reservoir, to transport the nutrients required for growth, and to selectively reduce the apparent permeability of the reservoir as a result of microbial growth and metabolism. Nutrients such as glucose, ammonia, nitrogen and phosphate were transported through Berea sandstone cores in amounts sufficient to support microbial growth. Viable bacterial cells in brine solution were transported through sandstone cores with permeabilities as low as 196 md. Continuous nutrient injection resulted in almost complete blockage of fluid flow while batch addition of nutrients resulted in permeability reductions of 60 to 80% of the initial value. Indigenous microbial populations accounted for 50 to 70% of these permeability reductions. Effluent of cores that received nutrients had large numbers of viable cells indicating that growth may be a mechanism to transport the cells through the rock. Electron microscopy indicates that the plugging by bacteria may involve the aggregation of clays and other insoluble materials with the bacterial biomass. 45 references, 16 figures, 7 tables.

Research Organization:
Oklahoma Univ., Norman (USA)
DOE Contract Number:
AS19-80BC10300
OSTI ID:
5737680
Report Number(s):
DOE/BC/10300-34; ON: DE84001027
Country of Publication:
United States
Language:
English