Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Summation of partial wave expansions in the scattering by shortrange potentials

Journal Article · · J. Math. Phys. (N.Y.); (United States)
DOI:https://doi.org/10.1063/1.524334· OSTI ID:5727480

Previous theorems on the convergence of the punctual Pade approximant to the scattering amplitude are extended. The new proofs correspond to the case of potentials having a shortrange tail of the type V (r)/sub r/..-->..infinityapprox.V/sub o/r/sup -rho-1/ exp(-..mu..r), where V/sub 0/ is a constant, rho an integer and ..mu..>0, and are restricted to within the Lehmann ellipse, in the complex costheta plane, where the partial wave expansion converges. Asymptotic estimates are obtained for the error of the approximants.

Research Organization:
Instituto de Fisica, Universidade Federal Fluminense, Cuteiro de Sao Joao Batista s/n, Caixa Postal 296, 24000 Niteroi--RJ, Brazil
OSTI ID:
5727480
Journal Information:
J. Math. Phys. (N.Y.); (United States), Journal Name: J. Math. Phys. (N.Y.); (United States) Vol. 21:1; ISSN JMAPA
Country of Publication:
United States
Language:
English

Similar Records

Summation of partial wave expansions in the scattering by long range potentials. I
Journal Article · Fri Mar 31 23:00:00 EST 1978 · J. Math. Phys. (N.Y.); (United States) · OSTI ID:5066244

Punctual Pade approximants as a regularization procedure for divergent and oscillatory partial wave expansions of the scattering amplitude
Journal Article · Thu Nov 30 23:00:00 EST 1978 · J. Math. Phys. (N.Y.); (United States) · OSTI ID:6636969

Functional derivative of the universal density functional in Fock space
Journal Article · Fri Oct 01 00:00:00 EDT 2004 · Physical Review. A · OSTI ID:20646355