Summation of partial wave expansions in the scattering by shortrange potentials
Journal Article
·
· J. Math. Phys. (N.Y.); (United States)
Previous theorems on the convergence of the punctual Pade approximant to the scattering amplitude are extended. The new proofs correspond to the case of potentials having a shortrange tail of the type V (r)/sub r/..-->..infinityapprox.V/sub o/r/sup -rho-1/ exp(-..mu..r), where V/sub 0/ is a constant, rho an integer and ..mu..>0, and are restricted to within the Lehmann ellipse, in the complex costheta plane, where the partial wave expansion converges. Asymptotic estimates are obtained for the error of the approximants.
- Research Organization:
- Instituto de Fisica, Universidade Federal Fluminense, Cuteiro de Sao Joao Batista s/n, Caixa Postal 296, 24000 Niteroi--RJ, Brazil
- OSTI ID:
- 5727480
- Journal Information:
- J. Math. Phys. (N.Y.); (United States), Journal Name: J. Math. Phys. (N.Y.); (United States) Vol. 21:1; ISSN JMAPA
- Country of Publication:
- United States
- Language:
- English
Similar Records
Summation of partial wave expansions in the scattering by long range potentials. I
Punctual Pade approximants as a regularization procedure for divergent and oscillatory partial wave expansions of the scattering amplitude
Functional derivative of the universal density functional in Fock space
Journal Article
·
Fri Mar 31 23:00:00 EST 1978
· J. Math. Phys. (N.Y.); (United States)
·
OSTI ID:5066244
Punctual Pade approximants as a regularization procedure for divergent and oscillatory partial wave expansions of the scattering amplitude
Journal Article
·
Thu Nov 30 23:00:00 EST 1978
· J. Math. Phys. (N.Y.); (United States)
·
OSTI ID:6636969
Functional derivative of the universal density functional in Fock space
Journal Article
·
Fri Oct 01 00:00:00 EDT 2004
· Physical Review. A
·
OSTI ID:20646355