The Dirac equation in a non-Riemannian manifold III: An analysis using the algebra of quaternions and octonions
Journal Article
·
· Journal of Mathematical Physics (New York); (USA)
- NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, M.S. 209, P.O. Box 500, Batavia, Illinois 60510 (US) Departamento de Campos e Particulas, Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud, 150, 22.290, Rio de Janeiro, RJ, Brazil
The geometrical properties of a flat tangent space-time local to the manifold of the Einstein--Schroedinger nonsymmetric theory to which an internal octonionic space is attached, is developed here. As an application of the theory, an octonionic Dirac equation for a spin-1/2 particle is also obtained, where is now used an octonionic-like gauge field. It is shown that the (quaternionic) nonsymmetric Yang--Mills theory can be easily recovered and from there, the usual gauge theory on a curved space.
- OSTI ID:
- 5711063
- Journal Information:
- Journal of Mathematical Physics (New York); (USA), Journal Name: Journal of Mathematical Physics (New York); (USA) Vol. 32:5; ISSN JMAPA; ISSN 0022-2488
- Country of Publication:
- United States
- Language:
- English
Similar Records
The Dirac equation in a non-Riemannian manifold: II. An analysis using an internal local n -dimensional space of the Yang--Mills type
Geometrical properties of an internal local octonionic space in curved space-time
Extension of quaternionic metrics to octonions
Journal Article
·
Fri Jun 01 00:00:00 EDT 1990
· Journal of Mathematical Physics (New York); (USA)
·
OSTI ID:6848129
Geometrical properties of an internal local octonionic space in curved space-time
Journal Article
·
Tue Sep 15 00:00:00 EDT 1987
· Phys. Rev. D; (United States)
·
OSTI ID:6205237
Extension of quaternionic metrics to octonions
Journal Article
·
Sat Nov 30 23:00:00 EST 1985
· J. Math. Phys. (N.Y.); (United States)
·
OSTI ID:6156338
Related Subjects
657003* -- Theoretical & Mathematical Physics-- Relativity & Gravitation
71 CLASSICAL AND QUANTUM MECHANICS
GENERAL PHYSICS
DIFFERENTIAL EQUATIONS
DIRAC EQUATION
EINSTEIN-SCHROEDINGER THEORY
EQUATIONS
FIELD THEORIES
GAUGE INVARIANCE
INVARIANCE PRINCIPLES
MATHEMATICAL MANIFOLDS
MATHEMATICAL SPACE
PARTIAL DIFFERENTIAL EQUATIONS
RIEMANN SPACE
SPACE
SPACE-TIME
SPINORS
UNIFIED-FIELD THEORIES
USES
WAVE EQUATIONS
YANG-MILLS THEORY
71 CLASSICAL AND QUANTUM MECHANICS
GENERAL PHYSICS
DIFFERENTIAL EQUATIONS
DIRAC EQUATION
EINSTEIN-SCHROEDINGER THEORY
EQUATIONS
FIELD THEORIES
GAUGE INVARIANCE
INVARIANCE PRINCIPLES
MATHEMATICAL MANIFOLDS
MATHEMATICAL SPACE
PARTIAL DIFFERENTIAL EQUATIONS
RIEMANN SPACE
SPACE
SPACE-TIME
SPINORS
UNIFIED-FIELD THEORIES
USES
WAVE EQUATIONS
YANG-MILLS THEORY