Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Gas-phase chemistry of Sc(CH{sub 3}){sub 2}{sup +} with alkenes: Activation of allylic C-H bonds by a d{sup 0} system and the migratory insertion of C=C bonds into Sc{sup +}-CH{sub 3} bonds

Journal Article · · Journal of the American Chemical Society
; ;  [1]
  1. Purdue Univ., West Lafayette, IN (United States); and others
The gas-phase chemistry of Sc(CH{sub 3}){sub 2}{sup +} with alkenes was studied by Fourier transform mass spectrometry. The metal center on Sc(CH{sub 3}){sub 2}{sup +} is d{sup 0}, providing an opportunity to study alternative mechanisms of C-C or C-H activation other than the most common one involving oxidative addition. The elimination of H{sub 2} is observed in the reaction of Sc(CH{sub 3}){sub 2}{sup +} with ethylene, and the product ScC{sub 4}H{sub 8}{sup +} and ScC{sub 6}H{sub 10}{sup +} ions have a metal(methyl)(allyl) and metal-bisallyl structure, respectively, consistent with a proposed reaction mechanism involving the consecutive migratory insertion of ethylenes into the scandium-methyl bonds. In addition, theoretical calculations indicate that the metal(methyl)(allyl) structure is between 10 and 20 kcal/mol more stable than the metal(1-butene) isomer. Sc(CH{sub 3}){sub 2}{sup +} reacts with propene to form predominantly ScC{sub 4}H{sub 8}{sup +} by loss of CH{sub 4}, with minor amounts of ScC{sub 3}H{sub 4}{sup +} and ScC{sub 4}H{sub 6}{sup +} also observed. ScC{sub 4}H{sub 6}{sup +} is formed as either the exclusive or the predominant product ion in the reactions of Sc(CH{sub 3}){sub 2}{sup +} with butenes. Sc(CH{sub 3}){sub 2} reacts with cyclopentene to form predominantly ScC{sub 6}H{sub 8}{sup +} by losing CH{sub 4} and H{sub 2}. Isotope labeling studies with Sc(CD{sub 3}){sub 2}{sup +} and other structure studies indicate that all of the alkenes studied, with the exception of ethylene, react with Sc(CH{sub 3}){sub 2}{sup +} via a multicentered {sigma}-bond metathesis mechanism to activate allylic C-H bonds. Finally, the dehydrogenation reactions of Sc{sup +} with n-butane and neopentane were revisited, and a new mechanism is proposed for such chemistry in light of the new results from this study. 34 refs., 5 figs., 2 tabs.
DOE Contract Number:
FG02-87ER13766
OSTI ID:
569224
Journal Information:
Journal of the American Chemical Society, Journal Name: Journal of the American Chemical Society Journal Issue: 23 Vol. 114; ISSN JACSAT; ISSN 0002-7863
Country of Publication:
United States
Language:
English