skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Geochemical evidence for the hydrology of a Tamarack-peat bog, Brimfield Township, Portage County, Ohio

Abstract

Peat Bogs and wetlands represent unique environmental settings what are increasingly subjected to anthropogenic stresses involving inputs of water and chemicals. This study used geochemical and hydrologic monitoring to determine the inputs and fates of elements of the Kent-Brimfield bog located in Portage County, Ohio. Based on physical and chemical information collected over one year, a model is proposed here describing the hydrologic connection between a bog and shallow ground water surrounding the bog. The chemical composition of precipitation, soil water and ground water in the bog vicinity were monitored for one year. Field measurements included water levels, pH, Eh, alkalinity and temperature. Trace metal content of the peat, the pore waters, soil water and ground waters were determined by GFAA, ICP and LIC methods. This bog was found to function as part of a perched water table aquifer. Water in the upper 3 m of the bog is found to be chemically similar to precipitation, but modified by reactions involving dissolution of mineral matter and biologic processes. The chemistry of water deeper in the bog (> 3m) resembles shallow ground water surrounding the bog, modified by weathering of underlying geologic materials and sulfate reduction. This similarity, along with groundmore » water elevations within and outside of the bog, supports that shallow ground water interacts with, and helps maintain water levels in the upper surface of the bog. From these results, a model is proposed for the seasonal variations in hydrologic processes operating in the wetland and surrounding basin, and describes how wetlands may change seasonally from being influent to effluent systems.« less

Authors:
;  [1]
  1. (Kent State Univ., OH (United States). Dept. of Geology and Water Resources)
Publication Date:
OSTI Identifier:
5687783
Report Number(s):
CONF-921058--
Journal ID: ISSN 0016-7592; CODEN: GAAPBC
Resource Type:
Conference
Resource Relation:
Journal Name: Geological Society of America, Abstracts with Programs; (United States); Journal Volume: 24:7; Conference: 1992 annual meeting of the Geological Society of America (GSA), Cincinnati, OH (United States), 26-29 Oct 1992
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; 54 ENVIRONMENTAL SCIENCES; OHIO; WETLANDS; HYDROLOGY; AQUIFERS; CHEMICAL COMPOSITION; ENVIRONMENTAL TRANSPORT; FLOW MODELS; GEOCHEMISTRY; GROUND WATER; METALS; MONITORING; PEAT; SEASONAL VARIATIONS; TRACE AMOUNTS; WATER CHEMISTRY; AQUATIC ECOSYSTEMS; CHEMISTRY; DEVELOPED COUNTRIES; ECOSYSTEMS; ELEMENTS; ENERGY SOURCES; FOSSIL FUELS; FUELS; HYDROGEN COMPOUNDS; MASS TRANSFER; MATHEMATICAL MODELS; MATTER; NORTH AMERICA; ORGANIC MATTER; OXYGEN COMPOUNDS; USA; VARIATIONS; WATER 580000* -- Geosciences; 540210 -- Environment, Terrestrial-- Basic Studies-- (1990-)

Citation Formats

Wilson, T.P., and Miller, L.A.. Geochemical evidence for the hydrology of a Tamarack-peat bog, Brimfield Township, Portage County, Ohio. United States: N. p., 1992. Web.
Wilson, T.P., & Miller, L.A.. Geochemical evidence for the hydrology of a Tamarack-peat bog, Brimfield Township, Portage County, Ohio. United States.
Wilson, T.P., and Miller, L.A.. 1992. "Geochemical evidence for the hydrology of a Tamarack-peat bog, Brimfield Township, Portage County, Ohio". United States. doi:.
@article{osti_5687783,
title = {Geochemical evidence for the hydrology of a Tamarack-peat bog, Brimfield Township, Portage County, Ohio},
author = {Wilson, T.P. and Miller, L.A.},
abstractNote = {Peat Bogs and wetlands represent unique environmental settings what are increasingly subjected to anthropogenic stresses involving inputs of water and chemicals. This study used geochemical and hydrologic monitoring to determine the inputs and fates of elements of the Kent-Brimfield bog located in Portage County, Ohio. Based on physical and chemical information collected over one year, a model is proposed here describing the hydrologic connection between a bog and shallow ground water surrounding the bog. The chemical composition of precipitation, soil water and ground water in the bog vicinity were monitored for one year. Field measurements included water levels, pH, Eh, alkalinity and temperature. Trace metal content of the peat, the pore waters, soil water and ground waters were determined by GFAA, ICP and LIC methods. This bog was found to function as part of a perched water table aquifer. Water in the upper 3 m of the bog is found to be chemically similar to precipitation, but modified by reactions involving dissolution of mineral matter and biologic processes. The chemistry of water deeper in the bog (> 3m) resembles shallow ground water surrounding the bog, modified by weathering of underlying geologic materials and sulfate reduction. This similarity, along with ground water elevations within and outside of the bog, supports that shallow ground water interacts with, and helps maintain water levels in the upper surface of the bog. From these results, a model is proposed for the seasonal variations in hydrologic processes operating in the wetland and surrounding basin, and describes how wetlands may change seasonally from being influent to effluent systems.},
doi = {},
journal = {Geological Society of America, Abstracts with Programs; (United States)},
number = ,
volume = 24:7,
place = {United States},
year = 1992,
month = 1
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • A detailed geophysical survey was conducted in Franklin Township, Portage County, Ohio to delineate a buried valley. A combination of the gravity, electrical resistivity, and surface refraction seismic modeling has been applied to determine the bedrock topography, the lithology of the bedrock, the nature of the glacial fill, and the thickness of the associated aquifer. Three dimensional gravity modeling defines the size and shape of the glacial fill with low density compared to the surrounding bedrock and provides a bedrock topography map with a high resolution. The calculated bedrock topography coincides with the water well data available in the area.more » Resistivity modeling was used to search for a least-squares fit between the measured and the theoretical curves to evaluate the layer thickness and resistivity. The resistivity profile indicates that there exists an aquifer with the thickness about 50 feet within the glacial fill. The level of the soil moisture and the water table is suggested by the resistivity data as well. The seismic profile supports the bedrock boundary calculated by gravity modeling, and shows that the upper part of the bedrock consists of three layers, upper sandstone, shale, and lower sandstone. The comprehensive geophysical interpretation infers that the pre-glacial valley, cut through Sharon Sandstone, Meadville Shale to Berea Sandstone, was extended and deepened at the northern end, and filled with glacial material derived from the north during the later glacial period, resulting in a thick aquifer in the glacial fill.« less
  • Approximately 75 wells have penetrated the Cambrian Rose Run sandstone in Randolph Township, Portage County, Ohio, about half of which should produce well beyond economic payout. Only one deep test (to the Rose Run or deeper) was drilled in this Township prior to 1990. Two separate and distinct Rose Run producing fields exist in the Township; the western field is predominately gas-productive and the east is predominantly oil-productive. Both fields are on the north side of the Akron-Suffield Fault Zone, which is part of a regional cross-strike structural discontinuity extending from the Pittsburgh, Pennsylvania area northwestward to Lake Erie. Thismore » feature exhibits control over Berea, Oriskany, Newburg, Clinton, and Rose Run production.« less
  • The primary objective of the Reservoir Management Field Demonstration Program is to demonstrate that multidisciplinary reservoir management teams using appropriate software and methodologies with efforts scaled to the size of the resource are a cost-effective method for: Increasing current profitability of field operations; Forestalling abandonment of the reservoir; and Improving long-term economic recovery for the company. The primary objective of the Reservoir Management Demonstration Project with Belden and Blake Corporation is to develop a comprehensive reservoir management strategy to improve the operational economics and optimize oil production from East Randolph field, Randolph Township, Portage County, Ohio. This strategy identifies themore » viable improved recovery process options and defines related operational and facility requirements. In addition, strategies are addressed for field operation problems, such as paraffin buildup, hydraulic fracture stimulation, pumping system optimization, and production treatment requirements, with the goal of reducing operating costs and improving oil recovery.« less
  • The Lower Silurian Clinton section (Ordovician Queenston Shale to Packer Shell/Brassfield Limestone) represents a deltaic sequence in Portage County where it occurs approximately 25 mi east of the delta edge and 50 mi east of the sandstone depositional limit. In Portage County, the Clinton section is approximately 190 ft thick. The mean sandstone thickness is 53 ft (range from > 100 to < 10 ft). The mean sandstone thickness is much greater than it is for the Clinton sandstone reservoir closer to the delta edge, where hydrocarbon production is comparable to, or surpasses that in Portage County. It is nowmore » evident that the occurrence of thick, clean Clinton sandstone is not the only primary geologic factor for high production from the reservoir. Two productive areas were studied to isolate controls on hydrocarbon occurrence and production. One area is structurally low, the other is structurally high, but both have about the same mean Clinton sandstone thickness.« less
  • The Mississippian Berea Sandstone is a reservoir for shallow gas in Randolph and Suffield townships of Portage County, Ohio. The Berea Sandstone is well known in Ohio from its outcrops at the outskirts of Cleveland. It is among the more productive formations in Ohio where it yields gas, oil, or gas and oil at moderate to very shallow depths. The great differences in reservoir quality, sandstone distribution, and producibility in Berea oil and gas fields are partly related to the use of the term Berea for several sandstone bodies that produce from different structural and stratigraphic settings. In Portage County,more » the Berea Sandstone is up to 60 ft (18 m) thick and has a porosity in the 15-25% range. The sand is white, medium to fine-grained quartz, poorly cemented, and without substantial shale interbeds. The reservoir lies below the Cap Berea, a gray, cemented thin bed at the base of the Sunbury Shale (driller's Coffee shale). In Portage County, the sand is currently interpreted as fluvial or deltaic. Within the field, thickness of the reservoir and hydrocarbon saturated zone varies little. Natural gas is produced from the top 30 ft (9 m) of the reservoir. The reservoir energy is water drive. The gas fields lie just updip from a steep structural terrace interpreted as a fault zone. The trap for the fields is anticlinal and the Sunbury Shale is the seal. New wells drilled into the reservoir at 400-500 ft (122-152 m) in depth produce gas without water. Initial open flow tested up to 1.0 MMCFGD at an initial reservoir pressure of about 80 psig (552 kPa).« less